Contents

Preface XV

List of Contributors XVII

List of Symbols XXI

1 Introduction 1
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth

Part 1 Theory 9

2 The Road to MCTDH 11
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth
2.1 The Standard Method 12
2.2 Time-Dependent Hartree 13

3 Basic MCTDH Theory 17
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth
3.1 Wavefunction Ansatz and Equations of Motion 17
3.2 The Constraint Operator 20
3.3 Efficiency and Memory Requirements 22
3.4 Multistate Calculations 27
3.5 Parametrized Basis Functions: G-MCTDH 28

4 Integration Schemes 31
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth
4.1 The Variable Mean-Field (VMF) Integration Scheme 31
4.2 A Simple Constant Mean-Field (CMF) Integration Scheme 32
4.3 Why CMF Works 33
4.4 Second-Order CMF Scheme 34
Contents

5 Preparation of the Initial Wavepacket 37
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth

5.1 Initial Wavepacket as Hartree Product 37
5.2 Eigenstates and Operated Wavefunctions 38

6 Analysis of the Propagated Wavepacket 41
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth

6.1 Runtime Analysis of Accuracy 41
6.2 Spectra 43
6.2.1 Photoabsorption Spectra 43
6.2.2 Eigenvalues and Filter Diagonalization 46
6.2.3 Time-Resolved Spectra 48
6.3 Optimal Control 50
6.4 State Populations 50
6.5 Reaction Probabilities 52

7 MCTDH for Density Operator 57
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth

7.1 Wavefunctions and Density Operators 57
7.2 Type I Density Operators 58
7.3 Type II Density Operators 60
7.4 Properties of MCTDH Density Operator Propagation 61

8 Computing Eigenstates by Relaxation and Improved Relaxation 63
Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth

8.1 Relaxation 63
8.2 Improved Relaxation 63
8.3 Technical Details 66

9 Iterative Diagonalization of Operators 69
Fermin Huarte-Larrañaga and Uwe Manthe

9.1 Operators Defined by Propagation 69
9.2 A Modified Lanczos Scheme 70
9.3 The State-Averaged MCTDH Approach 71

10 Correlation Discrete Variable Representation 73
Fermin Huarte-Larrañaga and Uwe Manthe

10.1 Introduction 73
10.2 Time-Dependent Discrete Variable Representation 74
10.3 Correlation Discrete Variable Representation 76
10.4 Symmetry-Adapted Correlation Discrete Variable Representation 78
10.5 Multidimensional Correlation Discrete Variable Representation 78
Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potential Representations (potfit)</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11.1 Expansion in Product Basis Sets</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>11.2 Optimizing the Coefficients</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>11.3 Optimizing the Basis</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>11.4 The potfit Algorithm</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>11.5 Contraction Over One Particle</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>11.6 Separable Weights</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>11.7 Non-Separable Weights</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>11.8 Computational Effort and Memory Request</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Kinetic Energy Operators</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Hans-Dieter Meyer, Fabien Gatti and Graham A. Worth</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>12.2 Vector Parametrization and Properties of Angular Momenta</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>12.2.1 Examples</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>12.2.2 General Formulation</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>12.2.2.1 Defining a Set of $N - 1$ Vectors and the Corresponding Classical Kinetic Energy</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>12.2.2.2 Introduction of the Body-Fixed Frame and Quantization</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>12.2.2.3 Introduction of the Body-Fixed Projections of the Angular Momenta Associated With the $N - 1$ Vectors</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>12.3 General Expression of KEO in Standard Polyspherical Coordinates</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>12.3.1 General Expression</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>12.3.1.1 Definition of the BF frame: Figure 12.3</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>12.3.1.2 Polyspherical Parametrization</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>12.3.1.3 Properties of the BF Projections of the Angular Momenta</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>12.3.1.4 General Expression of the KEO in Polyspherical Coordinates</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>12.3.1.5 Introduction of a Primitive Basis Set of Spherical Harmonics</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>12.4 Examples</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>12.4.1 Scattering Systems: $H_2 + H_2$</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>12.4.2 Semi-Rigid Molecules: HFCO</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>12.5 Extensions</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>12.5.1 Separation Into Subsystems</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>12.5.2 Constrained Operators</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Extension to New Areas</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Direct Dynamics With Quantum Nuclei</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Benjamin Lasorne and Graham A. Worth</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13.1 Introduction</td>
<td>113</td>
</tr>
</tbody>
</table>
Contents

13.2 Variational Multiconfiguration Gaussian Wavepackets 115
 13.2.1 Gaussian Wavepacket Ansatz 115
 13.2.2 Equations of Motion 117
 13.2.3 Integration Scheme 120
 13.2.4 Initial Wavepacket 121
 13.2.5 Direct Dynamics Implementation 122
 13.3 Applications 124
 13.4 Conclusions 128

14 Multilayer Formulation of the Multiconfiguration Time-Dependent Hartree Theory 131
 Haobin Wang and Michael Thoss
 14.1 Introduction 131
 14.2 From Conventional Wavepacket Propagation to ML-MCTDH Theory: A Variational Perspective 132
 14.2.1 Conventional Approach Based on Time-Independent Configurations 132
 14.2.2 The Multiconfiguration Time-Dependent Hartree Method 134
 14.2.3 The Multilayer Formulation of the MCTDH Theory 138
 14.3 Concluding Remarks 145

15 Shared Memory Parallelization of the Multiconfiguration Time-Dependent Hartree Method 149
 Michael Brill and Hans-Dieter Meyer
 15.1 Motivation 149
 15.2 Shared Memory Parallelization of MCTDH 149
 15.2.1 Equations of Motion and Runtime Distribution 150
 15.2.2 Parallelization of the MCTDH Coefficients Propagation 151
 15.2.3 Parallelization of the Mean-Field Computation 152
 15.2.4 Parallelization of the SPFs Propagation 153
 15.2.5 Parallelization Scheme 153
 15.2.6 Load Balancing and Memory Requirements 154
 15.3 Results and Conclusion 156
 15.3.1 Benchmark Systems 156
 15.3.2 Amdahl's Law 157
 15.3.3 Results 157
 15.3.4 Conclusion and Outlook 159

16 Strongly Driven Few-Fermion Systems – MCTDHF 161
 Gerald Jordan and Armin Scrinzi
 16.1 Equations of Motion for Indistinguishable Particles 161
 16.1.1 Model System: Laser-Driven Few-Electron Systems 162
 16.1.2 Spin 163
16.2 Computation of Operators 164
16.2.1 K and Mean-Field Operators 164
16.2.2 Spatial Discretization 165
16.2.3 One-Particle Operators 168
16.2.4 Two-Particle Operators 169
16.2.4.1 Representation of H on a Coarse Grid 169
16.2.4.2 H-Matrix Representation 170
16.3 Parallelization 171
16.3.1 Application of the Inverse Overlap Matrix S^{-1} 172
16.3.2 Parallel Computation of Mean Fields 173
16.3.3 Dynamic Load Balancing 174
16.4 Observables and Transformations 174
16.4.1 Orbital Transformations 174
16.4.2 Projections Onto Multiparticle States 175
16.4.3 One- and Two-Particle Expectation Values 175
16.4.4 All-Particle Observables 176
16.4.5 Spectra 177
16.5 Applications 178
16.5.1 Ionization of Linear Molecules 178
16.5.1.1 High-Harmonic Spectra of Molecules 179
16.5.2 Cold Fermionic Atoms 182

17 The Multiconfigurational Time-Dependent Hartree Method for Identical Particles and Mixtures Thereof 185
 Ofir E. Alon, Alexej I. Streltsov and Lorenz S. Cederbaum
17.1 Preliminary Remarks 185
17.2 Bosons or Fermions? – Unifying MCTDHB and MCTDHF 186
17.2.1 Basic Ingredients 186
17.2.2 Equations of Motion with Reduced Density Matrices 189
17.3 Bose–Bose, Fermi–Fermi and Bose–Fermi Mixtures 192
17.3.1 Ingredients for Mixtures 192
17.3.2 Equations of Motion With Intra- and Inter-Species Reduced Density Matrices 194
17.4 Higher-Order Forces and Reduced Density Matrices 196
17.4.1 Ingredients for Three-Body Interactions 197
17.4.2 Equations of Motion With Three-Body Reduced Density Matrix 198
17.5 Illustrative Numerical Examples for Bosons: MCTDHB 199
17.6 Discussion and Perspectives 204
Part 3 Applications 209

18 Multidimensional Non-Adiabatic Dynamics 211
Graham A. Worth, Horst Köppel, Etienne Gindensperger and Lorenz S. Cederbaum

- 18.1 Introduction 211
- 18.2 The Vibronic Coupling Hamiltonian 212
- 18.3 Combining the Vibronic Coupling Model with MCTDH 215
- 18.4 Examples 219
 - 18.4.1 Allene Cation 219
 - 18.4.2 Cr(CO)₅ 221
 - 18.4.3 Benzene Cation 224
- 18.5 Effective Modes 227
- 18.6 Summary 229

19 MCTDH Calculation of Flux Correlation Functions: Rates and Reaction Probabilities for Polyatomic Chemical Reactions 231
Fermín Huarte-Larrañaga and Uwe Manthe

- 19.1 Introduction 231
- 19.2 Flux Correlation Functions and Quantum Transition-State Concept 233
 - 19.2.1 Thermal Rates From Flux Correlation Functions 233
 - 19.2.2 Thermal Flux Operator: Properties and Physical Interpretation 235
 - 19.2.3 Calculation of \(N(E) \) and \(k(T) \) 237
 - 19.3 Rate Constant Calculations 239
 - 19.3.1 Propagating All \(F_T \) Eigenstates 239
 - 19.3.2 Statistical Sampling 239
 - 19.4 Application to Polyatomic Reactions 241
 - 19.5 The Effect of Rotation-Vibration Coupling on Rate Constants 245
 - 19.6 Concluding Remarks and Outlook 246

20 Reactive and Non-Reactive Scattering of Molecules From Surfaces 249
Geert-Jan Kroes, Rob van Harreveld and Cédric Crespos

- 20.1 Introduction 249
- 20.2 Theory 251
- 20.3 Applications of MCTDH Method to Molecule-Surface Scattering 254
 - 20.3.1 Rotationally and Diffractionally Inelastic Scattering 254
 - 20.3.2 Dissociative Chemisorption 255
 - 20.3.2.1 Dissociative Chemisorption of \(\text{H}_2 \) on Metal Surfaces 255
 - 20.3.2.2 Dissociative Chemisorption of \(\text{N}_2 \) on Metal Surfaces 262
20.3.2.3 Dissociative Chemisorption of CH$_4$ on Ni(111) 263
20.3.3 Photodissociation of Molecules on Insulator Surfaces 264
20.3.4 Molecule–Surface Dynamics With Dissipation 266
20.4 Summary and Outlook 269

21 Intramolecular Vibrational Energy Redistribution and Infrared Spectroscopy 275

Fabien Gatti and Christophe Iung
21.1 Introduction 275
21.2 Local-Mode Excitation of CH Stretch in Fluoroform and Toluene 277
21.3 Study of Highly Excited States in HFCO and DFCO 279
21.4 Selective Population of Vibrational Levels in H$_2$CS in External Field 285
21.5 Cis–Trans Isomerization of HONO 287
21.6 Conclusion 290

22 Open System Quantum Dynamics With Discretized Environments 293

Mathias Nest
22.1 Introduction 293
22.2 The System–Bath Ansatz 295
22.3 Static and Dynamic Effects of the Bath 297
22.3.1 Static Effect: Lamb Shift 297
22.3.2 Small-Amplitude Motion 298
22.3.3 Inelastic Surface Scattering: Adsorption 300
22.4 Finite Temperatures 302
22.4.1 Random-Phase Wavefunctions 302
22.4.2 Inelastic Surface Scattering: Adsorption 303
22.4.3 Initial Slip and Coupling to Photons 306
22.5 Derivatives of MCTDH 307
22.6 Summary and Outlook 308

23 Proton Transfer and Hydrated Proton in Small Water Systems 311

Oriol Vendrell and Hans-Dieter Meyer
23.1 Introduction 311
23.2 Proton Transfer Along Chain of H-Bonded Water Molecules 313
23.2.1 Model for the Simulation of a Proton Wire 313
23.2.2 Dynamics of a Proton Wire 314
23.3 Dynamics and Vibrational Spectroscopy of the Zundel Cation 316
23.3.1 Set-Up of the Hamiltonian Operator 318
23.3.2 Representation of the Potential Energy Surface for H$_5$O$_2^+$ 321
23.3.3 Ground Vibrational State and Eigenstates in the Low-Frequency Domain 324
23.3.4 Infrared Absorption Spectrum 327
23.3.5 Analysis of the Middle Spectral Region and Dynamics of the Cluster 330
23.4 Conclusion 332

24 Laser-Driven Dynamics and Quantum Control of Molecular Wavepackets 335
 Oliver Kühn
 24.1 Introduction 335
 24.2 Theory 336
 24.3 Applications 339
 24.3.1 Vibrational Ladder Climbing in a Haem–CO Model 339
 24.3.2 Hydrogen-Bond Dynamics 344
 24.3.3 Predissociation Dynamics of Matrix-Isolated Diatomics 347
 24.4 Summary 352

25 Polyatomic Dynamics of Dissociative Electron Attachment to Water Using MCTDH 355
 Daniel J. Haxton, Thomas N. Rescigno and C. William McCurdy
 25.1 Introduction 355
 25.2 Dissociative Electron Attachment to Water 357
 25.3 Time-Dependent Treatment of DEA Within the LCP Model 359
 25.4 Coordinate Systems 361
 25.5 Hamiltonians 362
 25.6 Choice of Primitive Basis and Representation of Hamiltonians 363
 25.7 Representation of Potential Energy Functions Using potfit 364
 25.8 Single-Particle Function Expansion and Mode Combinations 364
 25.9 Propagation and Natural Orbitals 367
 25.10 Analysis of Flux to Calculate Cross-Sections 367
 25.10.1 Two-Body Breakup 367
 25.10.2 Three-Body Breakup 371
 25.11 Conclusion 373

26 Ultracold Few-Boson Systems in Traps 375
 Sascha Zöllner, Hans-Dieter Meyer and Peter Schmelcher
 26.1 Introduction 375
 26.2 Model 376
 26.2.1 Permutation Symmetry 377
 26.2.2 Modelling the Interaction 377