Principles of Nuclear Magnetic Resonance Microscopy

Paul T. Callaghan
Department of Physics and Biophysics
Massey University
New Zealand

CLARENDON PRESS • OXFORD
CONTENTS

2.6.9 The solid echo 84
2.6.10 Multiple pulse line-narrowing and magic angle spinning 85
2.7 References 91

3 THE INFLUENCE OF MAGNETIC FIELD GRADIENTS 93

3.1 Spin density and k-space 93
3.1.1 Conjugate spaces in reconstruction 93
3.1.2 Efficiency 97
3.2 Selective excitation 98
3.2.1 Soft and hard pulses 98
3.2.2 Evolution of the magnetization during selective excitation 101
3.2.3 Alternative refocusing methods 113
3.2.4 Self-refocused pulses 115
3.2.5 Spatially selective destruction and localized spectroscopy 117
3.2.6 The DANTE pulse sequence 120
3.3 Reconstruction in two-dimensions 121
3.3.1 Coordinate definition 121
3.3.2 Two-dimensional Fourier imaging (FI) 122
3.3.3 Two-dimensional projection reconstruction (PR) 124
3.3.4 Frequency and time domain relationships 128
3.4 Alternative reconstruction methods 129
3.4.1 Three-dimensional imaging 129
3.4.2 Rotating frame imaging 132
3.5 The use of echoes in imaging experiments 133
3.5.1 The echo sampling scheme 133
3.5.2 Multislicing and STEAM 138
3.5.3 Chemical shift selective imaging using stimulated echoes: CHESS 141
3.5.4 Echo summation 143
3.6 Rapid sampling of k-space 147
3.6.1 Low-angle excitation: FLASH imaging 148
3.6.2 Steady-state free precession: FAST, CE-FAST, FISP, and FADE 151
3.6.3 Echo planar imaging 152
3.7 Translational motion of the spins 157
3.7.1 The influence of diffusion in the presence of field gradients 157
3.7.2 The pulsed magnetic field gradient: diffusion and velocity 162
3.7.3 Reducing the influence of transverse relaxation 166
3.7.4 Generalized treatment of diffusion and flow: The Bloch–Torrey equations 167
3.8 References 169

4 HIGH-RESOLUTION k-SPACE IMAGING 173

4.1 Sensitivity, motion, and resolution 173
4.2 The signal-to-noise ratio in NMR 174
4.3 Frequency domain: discrete transformation in two dimensions 179
CONTENTS

4.4 Influence of smoothing filters 185
4.5 T_2-limited resolution 189
 4.5.1 T_2-optimal bandwidth 189
 4.5.2 Multiple echo summation 194
 4.5.3 Comparison of rapid acquisition methods 197
4.6 Diffusion-limited resolution 201
 4.6.1 Diffusion-optimal bandwidth 201
 4.6.2 Multiple echo summation 206
4.7 Susceptibility-limited resolution 208
 4.7.1 Susceptibility artefacts 209
 4.7.2 Distortionless imaging 216
 4.7.3 Diffusive attenuation 217
4.8 Comparison of Fourier imaging and projection reconstruction 224
4.9 Further resolution enhancement 225
4.10 References 226

5 k-SPACE MICROSCOPY IN BIOLOGY AND MATERIALS SCIENCE 227

5.1 Proton NMR in biological, synthetic, and mineral materials 228
 5.1.1 Water 229
 5.1.2 Plant and animal tissue 233
 5.1.3 Polymers 235
5.2 Proton density studies in the ‘liquid’ state 236
 5.2.1 Plant tissue images 237
 5.2.2 Animal tissue images 244
 5.2.3 Images in non-biological materials and in food products 254
5.3 Contrast techniques in imaging 267
 5.3.1 T_1 and T_2 contrast 270
 5.3.2 Chemical shift contrast 278
 5.3.3 Multiple quantum filters 288
 5.3.4 Signal suppression 290
 5.3.5 Magnetization transfer via molecular exchange 296
5.4 Other nuclei 296
5.5 NMR imaging in the solid state 306
 5.5.1 The sensitivity problem 306
 5.5.2 Dilute and low γ spins 307
 5.5.3 Proton imaging in the solid state 308
 5.5.4 Deuteron imaging and two-quantum coherence 318
5.6 References 318

6 THE MEASUREMENT OF MOTION USING SPIN ECHOES 328

6.1 Motional contrast and microstructure 328
6.2 Introduction to translational dynamics 330
 6.2.1 The conditional probability function and self-diffusion 330
 6.2.2 Velocity correlation, spectral density, and the self-diffusion tensor 334
CONTENTS

6.2.3 The relationship between $v_z(0)v_z(t)$ and P_s 335

6.3 PGSE: the scattering analogy and q-space 336
 6.3.1 The narrow-pulse approximation 338
 6.3.2 Finite pulse widths, self-diffusion, and flow 341
 6.3.3 Anisotropic self-diffusion 344
 6.3.4 Comparison of the sensitivity resolution limits in q-space and k-space imaging 350

6.4 General gradient modulation methods: the motional spectrum 353
 6.4.1 The effective gradient 353
 6.4.2 The method of cumulants 355
 6.4.3 The spectrum of the gradient and the spectrum of the motion 357
 6.4.4 Stationary and time-dependent random flow 362
 Appendix 6.1 367

6.6 References 368

7 STRUCTURAL IMAGING USING q-SPACE 371

7.1 Restricted diffusion 371

7.2 Simple confining boundaries 371
 7.2.1 Rectangular boundaries 371
 7.2.2 Spherical boundaries 373

7.3 The averaged propagator in the long time-scale limit 375
 7.3.1 Boxes and spheres 375
 7.3.2 Real space versus reciprocal space 380
 7.3.3 Selection based on compartment size 382

7.4 Porous structures 383
 7.4.1 Connected boxes in a regular lattice 384
 7.4.2 Partially connected structures: the connection matrix 386
 7.4.3 The finite time scale: diffusion in porous systems 390
 7.4.4 The irregular lattice and the pore glass 393
 7.4.5 Structure determination 398

7.5 'Soft-bounded' systems 400
 7.5.1 Diffusion near an attractive centre 400
 7.5.2 Curvilinear diffusion 401
 7.5.3 Diffusion in fractal geometries 404
 7.5.4 Systems with multiple regions 405

7.6 Spin relaxation in microscopically inhomogeneous media 407
 7.6.1 The two-phase model 408
 7.6.2 Relaxation sinks and normal modes 408
 7.6.3 PGSE experiment in a Brownstein-Tarr system 411
 7.6.4 Susceptibility inhomogeneity 413
 7.6.5 Signatures for relaxation 416

7.7 References 417
8 SPATIALLY HETEROGENEOUS MOTION AND DYNAMIC NMR MICROSCOPY

8.1 The influence of motion in imaging
 8.1.1 Steady-state methods 422
 8.1.2 Time-of-flight and spin ‘tagging’ 423
 8.1.3 Phase encoding 426
8.2 Periodic and slow motion
 8.2.1 Stroboscopic measurement 434
 8.2.2 Echo planar imaging and snapshot FLASH imaging 435
 8.2.3 The magnetization grating 436
8.3 Dynamic NMR microscopy
 8.3.1 Combined k-space and q-space imaging 438
 8.3.2 Digital computation of velocity and diffusion 441
 8.3.3 Applications in the study of diffusion and flow 443
 8.3.4 More complex motion 449
8.4 Velocity-compensated dynamic imaging
 8.4.1 Even echoes: the double PGSE experiment 449
 8.4.2 The effect of velocity shear in the measurement of diffusion 450
8.5 Potential artefacts
 8.5.1 Gradient-dependent phase shifts 452
 8.5.2 Influence of the slice selection gradient 452
 8.5.3 Broadening and baseline artefacts in the digital FFT 453
 8.5.4 The influence of gradient non-uniformity 454
 8.5.5 Transverse diffusion 456
8.6 Applications of dynamic NMR microscopy 456
8.7 References 457

9 ELEMENTS OF THE NMR MICROSCOPE

9.1 The system 461
9.2 Gradient and r.f. coils
 9.2.1 Electromagnet and superconductive magnet geometry 463
 9.2.2 Current pulse shaping and active shielding 470
9.3 Gradient coil design in solenoidal geometry
 9.3.1 Fields due to currents on cylindrical surfaces 472
 9.3.2 Single screening 473
 9.3.3 Double screening and target fields 474
 9.3.4 The Maxwell pair and saddle coil 475
9.4 High-gradient PGSE 478
 9.4.1 Echo instabilities 478
 9.4.2 Removing phase instabilities by means of a read gradient 479
9.5 References 482

INDEX 483