Nanoparticle Engineering for Chemical-Mechanical Planarization

Fabrication of Next-Generation Nanodevices

Ungyu Paik • Jea-Gun Park
Contents

Preface ... ix
The Authors .. xi

1 Overview of CMP Technology .. 1
 1.1 Motivation and Background .. 1
 1.2 The Key Factors of CMP Process ... 3
 1.2.1 CMP Polishing Machines .. 3
 1.2.2 Slurry for CMP .. 4
 1.2.3 Pad .. 6
 1.2.4 Slurry Supply Equipment and Filtering Equipment 6

2 Interlayer Dielectric CMP ... 9
 2.1 Interlayer Dielectric (ILD) CMP Process 9
 2.2 Rheological and Electrokinetic Behavior of Nano Fumed Silica Particle for ILD CMP ... 9
 2.2.1 The Unique Behavior of Concentrated Nano Fumed Silica Hydrosols ... 10
 2.2.2 Electrokinetic Behavior of Nano Silica Hydrosols 11
 2.2.3 Geometric Consideration ... 12
 2.3 Particle Engineering for Improvement of CMP Performance 14
 2.3.1 Surface Modification of Silica Particle 14
 2.3.2 Improvement of ILD CMP with Modified Silica Slurry 16
 2.4 PAD Dependency in ILD CMP ... 17
 2.5 ILD Pattern Dependencies ... 20
 2.5.1 CMP Tool Dependency .. 20
 2.5.2 Pattern Density Dependency 25

3 Shallow Trench Isolation CMP .. 35
 3.1 Requirement for High Selectivity Slurry 35
 3.2 Particle Engineering of Ceria Nanoparticles and Their Influence on CMP Performance .. 38
 3.2.1 Physical Properties of Ceria Particles 38
 3.2.2 STI CMP Performance with Ceria Slurries 39
 3.2.3 Influence of Crystalline Structure of Ceria Particles on the Remaining Particles .. 40
 3.3 Chemical Engineering for High Selectivity in STI CMP 45
 3.3.1 Electrokinetic Behavior of the Ceria Particle, Oxide, and Nitride Films ... 46
 3.3.2 STI CMP Performance in Different Suspension pH 47
5.4.1.2 NanoMapper, from ADE Phase Shift, USA 139
5.4.1.3 DynaSearch, from Raytex, Japan.............. 141
5.4.1.4 Line Profile Comparison among Three Instruments ... 143
5.4.1.5 Calibration among the Standard Deviations of Height Change Measured by Three Kinds of Instruments ... 143

6 Novel CMP for Next-Generation Devices ... 149
 6.1 The Progress of Semiconductor Devices upon Current Demand ... 149
 6.2 Complementary Metal-Oxide Semiconductor (CMOS) Memory ... 151
 6.2.1 Noble Metal CMP for DRAM ... 152
 6.2.2 Poly Si CMP for NAND Flash Memory ... 154
 6.3 Novel CMP for New Memory ... 163
 6.3.1 GST CMP for PRAM ... 163
 6.3.2 Novel CMP for ReRAM ... 170

References .. 171

Index .. 177