NANOSTRUCTURED AND PHOTOELECTROCHEMICAL SYSTEMS FOR SOLAR PHOTON CONVERSION

Editors

Mary D. Archer
Imperial College, UK

Arthur J Nozik
National Renewable Energy Laboratory, USA

Imperial College Press
CONTENTS

About the authors xi

Preface xix

1 Overview
M. D. Archer

1.1 Themes 1
1.2 Historical perspective 6
1.3 Extremely thin absorber (ETA) cells 10
1.4 Organic solar cells 12
1.5 Dye-sensitised solar cells (Grätzel cells) 16
1.6 Regenerative solar cells 18
1.7 Future prospects 23

App. The vacuum scale of electrode potential and the concept of the 24
solution Fermi level
1A SHE and SCE scales of electrode potential 25
1A.2 Absolute electrode potentials 25
1A.3 Absolute electrode potential of the SHE 27
1A.4 The solution Fermi level 28
1A.5 Vacuum scale of electrode potential 29

2 Fundamentals in photoelectrochemistry
R. J. D. Miller and R. Memming

2.1 Introduction 39
2.2 Photophysics of semiconductors and semiconductor particles 41
2.3 Carrier relaxation 55
2.4 Charge transfer at the semiconductor–electrolyte interface 84
2.5 Conversion of solar energy 120
2.6 Photocatalysis 130
2.7 Summary 132

3 Fundamentals and applications of quantum-confined structures
A. J. Nozik

3.1 Introduction 147
3.2 Quantisation effects in semiconductor nanostructures 151
3.3 Optical spectroscopy of quantum wells, superlattices and quantum dots 163
3.4 Hot electron and hole cooling dynamics in quantum-confined semiconductors 167
3.5 High conversion efficiency via multiple exciton generation in quantum dots 176
3.6 Quantum dot solar cell configurations 190
3.7 Summary and conclusions 194

4 Fundamentals and applications in electron-transfer reactions
M. D. Archer
4.1 Introduction 209
4.2 Historical perspective 213
4.3 Thermodynamics of ET and PET reactions 218
4.4 Classical Marcus theory 223
4.5 Semiclassical theories of nonadiabatic electron transfer 232
4.6 Electron transfer in donor–bridge–acceptor supermolecules 238
4.7 Electrochemical electron transfer 247
4.8 Rate control by reorganisation dynamics 261
4.9 Optimisation of photoinduced electron transfer in photoconversion 263
App. Solution density-of-states functions 265
4A App. Derivation of high-temperature limit Marcus rate equation for homogeneous electron transfer using density-of-states approach 266

5 Fundamentals in metal-oxide heterogeneous photocatalysis
N. Serpone and A. V. Emeline
5.1 Introduction 275
5.2 The complex science underlying metal-oxide photocatalysis 277
5.3 Metal-oxide photochemistry, photophysics and modelling 310
5.4 Challenges in heterogeneous photocatalysis 329
5.5 Theoretical description of quantum yields 345
5.6 Evidence for a gas/solid surface reaction being photocatalytic 374
5.7 Concluding remarks 381

6 Inorganic extended-junction devices
R. Könenkamp
6.1 Introduction 393
6.2 Concepts for extremely thin absorber cells 398
6.3 Preparation of substrates, absorber and transporting layers 403
6.4 Electronic and optical aspects 419
6.5 Devices 434
6.6 Advanced photovoltaic concepts and new routes to other electronic devices 441
6.7 Summary 443

7 **Organic donor–acceptor heterojunction solar cells**
J. J. Benson-Smith and J. Nelson

7.1 Introduction 453
7.2 Basic principles of photovoltaic conversion in organic materials 457
7.3 Donor–acceptor bilayer devices 461
7.4 Donor–acceptor bulk heterojunction devices 465
7.5 Relationship between material and device parameters and photovoltaic performance 473
7.6 Challenges 478
7.7 Summary 489

8 **Dye-sensitised mesoscopic solar cells**
M. Grätzel and J. R. Durrant

8.1 Introduction 503
8.2 Historical background 504
8.3 Mode of function of dye-sensitised solar cells 505
8.4 DSSC research and development 515
8.5 Solid-state dye-sensitised cells 526
8.6 Pilot production of modules, outdoor field tests and commercial DSSC development 527
8.7 Outlook 530

9 **Semiconductor/liquid junction photoelectrochemical solar cells**
S. Maldonado, A. G. Fitch and N. S. Lewis

9.1 Introduction 537
9.2 Variation of the solution redox couple 539
9.3 Non-aqueous solvents 548
9.4 Chemical modification of semiconductor surfaces 551
9.5 Future directions 569
10 Photoelectrochemical storage cells

10.1 Introduction 591
10.2 Comparative solar energy storage processes 594
10.3 Modes of photoelectrochemical storage 600
10.4 Optimisation of photoelectrochemical storage 603
10.5 Examples of photoelectrochemical storage cells 611
10.6 High-efficiency multiple-bandgap cells with storage 622
10.7 Conclusions 625

11 Measuring ultrafast photoinduced electron-transfer dynamics

11.1 Introduction 633
11.2 Techniques for measuring ultrafast electron transfer 635
11.3 Current understanding of ultrafast electron transfer 645
11.4 Summary 659

12 Experimental techniques in photoelectrochemistry

12.1 Introduction 675
12.2 Electrical methods 676
12.3 Photocurrent, photovoltage and microwave reflectance methods 683
12.4 In-situ spectroscopic methods 697
12.5 Time-resolved optical and spectroscopic techniques 702
12.6 Modulation spectroscopies 706
12.7 Frequency-resolved light modulation methods 712
12.8 Imaging techniques 720
12.9 In-situ X-ray analysis and EXAFS 723
12.10 Differential mass spectrometry (DEMS) 723
12.11 Combination of electrochemistry with vacuum spectroscopy 725

Appendices

I Fundamental Constants 737
II Useful Quantities and Conversion Factors 738
III List of Symbols 739
IV Acronyms and Abbreviations 743

Index 747