Inter-Asterisk Exchange (IAX) Deployment Scenarios in SIP-Enabled Networks

Mohamed Boucadair
France Telecom, France
2.5 How Does IAX Solve VoIP Pains? 12
2.6 How is Calls Multiplexing Achieved? 12
2.7 And What About Demultiplexing? 12
2.8 What Port Number Does IAX Use? 12
2.9 What Transport Protocol Does IAX Use? 12
2.10 Is IAX a Reliable Protocol? 12
2.11 How Does IAX Ensure Reliability? 13
2.12 Is there an IAX Registration Procedure? 13
2.13 Does IAX Registration Differ from SIP Registration? 13
2.14 How Are Media Streams Transported in IAX? 13
2.15 Is CODEC Negotiation Supported by IAX? 13
2.16 Is On-Fly CODEC Change Possible During a Call? 13
2.17 IAX: a Path-Coupled or Decoupled Protocol? 14
2.18 Can IAX be Aware of the Status of the Network Load? 14
2.19 What About Security? 14
2.20 Could IAX Devices Be Managed? 14
2.21 Is Firmware Version Updating Supported by IAX? 14
2.22 Can IAX Be Extended to Offer New Features? 14
2.23 How is an IAX Resource Identified? 14
2.24 What Does an IAX URI Look Like? 15
2.25 Is it Possible to Set a Call Involving Several IAX Servers? 15
2.26 Is it Possible to Discover the Location of an IAX Resource? 15
2.27 What Is DUNDi? 15
2.28 What Is TRIP? 15
2.29 What Is ENUM? 15
References 16
Further Reading 16

Part One: IAX Protocol Specifications

3 IAX Uniform Resource Identifier 19
3.1 Introduction 19
3.2 Format of IAX Uniform Resource Identifiers 20
3.3 Examples of IAX Uniform Resource Identifiers 20
3.4 Comparing IAX Uniform Resource Identifiers 22
3.5 IAX Uniform Resource Identifiers and ENUM 24
 3.5.1 ENUM Architecture: Overview 24
 3.5.2 ENUM Validation Rules 27
 3.5.3 Call Routing in an ENUM-Enabled Telephony Domain 27
 3.5.4 ENUM Service Registration 28
 3.5.5 IAX ENUM Service Registration 29
 3.5.6 Examples of IAX ENUM Service Registration 29
References 32
Further Reading 33
7.6 Authentication and Encryption 85
7.7 Conclusion 87
References 87
Further Reading 87

8 IAX Operations 89
8.1 Introduction 89
8.2 Provisioning and Firmware Download 90
8.2.1 Context 90
8.2.2 Provisioning Examples 90
8.2.3 Firmware Update 91
8.3 Registration 92
8.3.1 Procedure 92
8.3.2 Call Flow Examples 93
8.4 Call Setup 96
8.4.1 Procedure 96
8.4.2 Successful Call Setup Flows 96
8.4.3 Unsuccessful Call Setup Flow 98
8.4.4 Call Setup with a Server 98
8.5 Call Tear-Down 99
8.6 Call Monitoring 99
8.7 Call Optimisation 100
8.7.1 Context 100
8.7.2 Examples of a Call Transfer Call Flow 100
8.8 Conclusion 101
References 101
Further Reading 101

Part Two: Discussion and Analysis

9 IAX and Advanced Services 105
9.1 Introduction 105
9.2 CODEC Negotiation 105
9.3 Video Sessions 107
9.4 Negotiation of Several Media Types in the Same IAX Session 108
9.5 Presence Services 110
9.6 Instant Messaging 112
9.7 Topology Hiding 114
9.8 Mobility 114
9.8.1 Personal Mobility 114
9.8.2 IP Mobility 114
9.9 Miscellaneous 115
9.10 Conclusion 115
References 116
Further Reading 116
10 Multi-IAX Servers Environment

10.1 Introduction

10.2 Focus

10.3 Discovery of IAX Resources
 10.3.1 Static Configuration
 10.3.2 DUNDi
 10.3.3 TRIP

10.4 Setting End-to-End Calls

10.5 Load Balancing
 10.5.1 Objective
 10.5.2 Implementation Alternatives

10.6 Path-Coupled and Path-Decoupled Discussion
 10.6.1 Service Provider Requirements
 10.6.2 SIP: a Path-Decoupled Protocol
 10.6.3 IAX: a Path-Coupled Signalling Protocol
 10.6.4 Discussion

10.7 Forking

10.8 Route Symmetry

10.9 Conclusion

References

11 IAX and NAT Traversal

11.1 Introduction

11.2 Structure

11.3 NAT Types
 11.3.1 Overview
 11.3.2 Examples of NAT Types

11.4 IAX and NAT Traversal Discussion
 11.4.1 Reference Architecture
 11.4.2 Discussion

11.5 Operational Considerations
 11.5.1 Deployment Scenarios
 11.5.2 The IP Exhaustion Problem
 11.5.3 IAX, NAT and P2P Considerations

11.6 Conclusion

References

Further Reading

12 IAX and Peer-to-Peer Deployment Scenarios

12.1 Introduction

12.2 Scope

12.3 A P2P Solution for Corporate Customers
 12.3.1 MEVA Architecture
 12.3.2 MEVA-Related IAX Frames
 12.3.3 MEVA Information Elements
 12.3.4 How to Subscribe to a MEVA Service
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.5 Contact Table</td>
<td>160</td>
</tr>
<tr>
<td>12.3.6 Session Establishment</td>
<td>161</td>
</tr>
<tr>
<td>12.3.7 Leaving the MEVA Service</td>
<td>162</td>
</tr>
<tr>
<td>12.3.8 Optimisation Issues</td>
<td>162</td>
</tr>
<tr>
<td>12.3.9 MEVA Architecture with a Point-de-Rendezvous</td>
<td>162</td>
</tr>
<tr>
<td>12.4 Conclusion</td>
<td>167</td>
</tr>
<tr>
<td>References</td>
<td>167</td>
</tr>
<tr>
<td>Further Reading</td>
<td>167</td>
</tr>
<tr>
<td>13 IAX and IPv6</td>
<td>169</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>169</td>
</tr>
<tr>
<td>13.2 Context and Assumptions</td>
<td>169</td>
</tr>
<tr>
<td>13.3 Service Migration to IPv6</td>
<td>170</td>
</tr>
<tr>
<td>13.4 Structure</td>
<td>170</td>
</tr>
<tr>
<td>13.5 The IP Address Exhaustion Problem</td>
<td>171</td>
</tr>
<tr>
<td>13.6 IPv6: a Long-Term Solution</td>
<td>174</td>
</tr>
<tr>
<td>13.6.1 Overview</td>
<td>174</td>
</tr>
<tr>
<td>13.6.2 Between IPv4 and IPv6: Where Is IPv5?</td>
<td>175</td>
</tr>
<tr>
<td>13.6.3 IPv6 at a Glance</td>
<td>175</td>
</tr>
<tr>
<td>13.7 Why IPv6 May Be Problematic for Telephony Signalling Protocols:</td>
<td>176</td>
</tr>
<tr>
<td>the SIP Example</td>
<td>176</td>
</tr>
<tr>
<td>13.7.1 Overview</td>
<td>176</td>
</tr>
<tr>
<td>13.7.2 Additional SIP Tags including IP-Related Information</td>
<td>176</td>
</tr>
<tr>
<td>13.7.3 IPv6-Embedded SIP Examples</td>
<td>177</td>
</tr>
<tr>
<td>13.9 Deployment of IAX Services in a 'Pure' IPv6 Environment</td>
<td>180</td>
</tr>
<tr>
<td>13.10 Heterogeneous Environment</td>
<td>181</td>
</tr>
<tr>
<td>13.10.1 Context and Reference Architecture</td>
<td>181</td>
</tr>
<tr>
<td>13.10.2 Analysis of Registration-Based Operations</td>
<td>182</td>
</tr>
<tr>
<td>13.10.3 Call Setup and Call Optimisation</td>
<td>187</td>
</tr>
<tr>
<td>13.11 Conclusion</td>
<td>189</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
</tr>
<tr>
<td>Further Reading</td>
<td>190</td>
</tr>
<tr>
<td>14 IAX: Towards a Lightweight SBC?</td>
<td>191</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>14.2 IP Telephony Administrative Domain</td>
<td>192</td>
</tr>
<tr>
<td>14.3 Deployment Scenarios</td>
<td>193</td>
</tr>
<tr>
<td>14.3.1 Access Segment</td>
<td>193</td>
</tr>
<tr>
<td>14.3.2 Interconnection Segment</td>
<td>193</td>
</tr>
<tr>
<td>14.4 Deployment Contexts</td>
<td>196</td>
</tr>
<tr>
<td>14.4.1 Legal Requirements</td>
<td>196</td>
</tr>
<tr>
<td>14.4.2 Technical Considerations</td>
<td>197</td>
</tr>
<tr>
<td>14.5 Service Limitations Caused by SBCs</td>
<td>198</td>
</tr>
<tr>
<td>14.6 Functional Decomposition</td>
<td>198</td>
</tr>
<tr>
<td>14.7 Taxonomy of SBC Functions in an SIP Environment</td>
<td>198</td>
</tr>
</tbody>
</table>
14.7.1 Topology Hiding .. 199
14.7.2 Media Traffic Shaping 200
14.7.3 Fixing Capability Mismatches 200
14.7.4 NAT Traversal 201
14.7.5 Access Control 202
14.7.6 Protocol Repair 202
14.7.7 Media Encryption 202
14.8 Validity of these Functions in an IAX Architecture 202
14.8.1 Topology Hiding 202
14.8.2 Media Traffic Shaping 203
14.8.3 Fixing Capability Mismatches 203
14.8.4 NAT Traversal 203
14.8.5 Access Control 203
14.8.6 Protocol Repair 203
14.8.7 Media Encryption 203
14.8.8 Lightweight SBC 204
14.9 Conclusion ... 204
 References ... 204
 Further Reading ... 204

Part Three: Deployment Scenarios in SIP-Based Environments

15 Scenarios for the Deployment of IAX-Based Conversational Services 207
15.1 SIP Complications 207
15.2 Structure ... 208
15.3 Beyond the ‘SIP-Centric’ Era 208
15.4 Methodology ... 210
15.5 Overall Context .. 210
 15.5.1 SIP is Adopted as De Facto Signalling Protocol 210
 15.5.2 Heavy Border Equipment 210
 15.5.3 Routing Confusion 211
 15.5.4 NAT Traversal Issues 211
 15.5.5 The Need to Take into Account the IP Exhaustion Problem and Migration to IPv6: Easing IPv4–IPv6 Interworking 212
 15.5.6 Fixed–Mobile Convergence 213
 15.5.7 Investment ... 213
 15.5.8 Implementation Availability 213
 15.5.9 Conclusion ... 214
15.6 Architectural Requirements 214
15.7 Brief Comparison 214
 15.7.1 Signalling Message Length 214
 15.7.2 Media Stream Length 215
 15.7.3 Security ... 217
 15.7.4 NAT Traversal 217
 15.7.5 Peer-to-Peer 217
 15.7.6 Firewall Traversal 217
15.7.7 Routing Considerations 218
15.7.8 IPv6–IPv4 Interworking 218
15.7.9 Keep-Alive Feature 218
15.7.10 Forking 218
15.7.11 Routing 218

15.8 Taxonomy 218
15.8.1 Access Segment 218
15.8.2 Core Segment 219
15.8.3 Border Segment 219

15.9 Introducing IAX into Operational Networks 219
15.9.1 Rationale 219
15.9.2 Alternatives 220

15.10 Conclusion 220

References 220

16 IAX in the Access Segment of SIP-Based Service Architectures 223
16.1 Introduction 223
16.2 A ‘High-Level’ Description of the Interworking Function 223
16.3 Examples of Call Flows 225
16.3.1 Reference Architecture 225
16.3.2 Provisioning and Firmware Update of End Devices 226
16.3.3 Registration without Authentication 227
16.3.4 Registration with Authentication 227
16.3.5 Call Setup 228
16.3.6 Call Tear-Down 233
16.3.7 Aliveness of Registered Users 234
16.3.8 Registration Release without Authentication 234
16.3.9 Registration Release with Authentication 235
16.4 Bandwidth Optimisation: An Extension to SIP 236
16.5 Conclusion 237

References 238

17 Validation Scenario 239
17.1 Overview 239
17.2 Configuring Asterisk Servers 239
17.2.1 Configuration Operations 239
17.2.2 Configuration Files 241
17.3 Configuring the SIP Express Router (SER) 242
17.3.1 Overview 242
17.3.2 Configuration File 243
17.4 User Agent Configuration 244
17.5 Conclusion 244

Further Reading 247

Index 249