Cognitive Radio and Dynamic Spectrum Access

Lars Berlemann
Deutsche Telekom, Germany

and

Stefan Mangold
Swisscom, Switzerland
Contents

List of Figures ix
List of Tables xvii
About the Authors xix
Foreword xxi
Preface xxiii
Acknowledgments xxvii
Abbreviations xxix

1 Introduction 1
1.1 Access to Radio Spectrum 1
1.2 Artificial Spectrum Scarcity from Unexploited Frequencies 2
1.3 Cognitive Radio and Dynamic Spectrum Access as Solution 4
1.4 This Book 4

2 Radio Spectrum Today – Regulation and Spectrum Usage 7
2.1 History and Terminology 8
 2.1.1 The Four Basic Approaches for Radio Spectrum Regulation 8
 2.1.2 Guiding Principles 9
2.2 Institutions that Regulate Radio Spectrum 10
 2.2.1 International Telecommunication Union, ITU 10
 2.2.2 Europe 10
 2.2.3 Germany 11
 2.2.4 United Kingdom 12
 2.2.5 Japan 12
 2.2.6 PR China 13
 2.2.7 United States of America 13
2.3 Licensed and Unlicensed Spectrum 14
 2.3.1 The Disadvantages of Spectrum Licensing 14
 2.3.2 Unlicensed Spectrum as an Alternative 15
 2.3.3 Tragedy of Commons in Unlicensed Spectrum 18
 2.3.4 Spectrum Measurements 19
3 Radio Spectrum Tomorrow – Dynamic Spectrum Access and Spectrum Sharing

3.1 Spectrum Sharing and Dynamic Spectrum Access: Concepts and Terminology

3.1.1 Spectrum Trading and Spectrum Liberalization

3.1.2 Underlay and Overlay Spectrum Sharing

3.1.3 Vertical and Horizontal Spectrum Sharing

3.1.4 Coexistence, Coordination and Cooperation

3.2 Horizontal Spectrum Sharing

3.2.1 Coexistence

3.2.2 Centralized Spectrum Coordination for Horizontal Sharing

3.2.3 Spectrum Sharing Games

3.3 Vertical Spectrum Sharing

3.3.1 Reuse of TV Bands for Vertical Spectrum Sharing

3.3.2 Spectrum Pooling and a Common Control for Vertical Spectrum Sharing

3.3.3 Operator-assistance in Vertical Spectrum Sharing

3.3.4 Spectrum Load Smoothing for Vertical Spectrum Sharing

3.4 Taxonomy for Spectrum Sharing

4 Towards Cognitive Radio – Research and Standardization

4.1 Research Programs and Projects

4.1.1 DARPA Next Generation Communications Program, XG

4.1.2 National Science Foundation’s Project GENI

4.1.3 European Project E3

4.1.4 European Project WINNER+

4.1.5 European Project WIP

4.1.6 European Project SOCRATES

4.1.7 European Project ROCKET

4.1.8 European Project ORACLE

4.2 IEEE Coordination, and the Coexistence Advisory Group

IEEE 802.19

4.3 IEEE SCC41/P1900

4.3.1 IEEE P1900.1

4.3.2 IEEE P1900.2

4.3.3 IEEE P1900.3

4.3.4 IEEE P1900.4

4.3.5 IEEE P1900.5

4.4 Wi-Fi Wireless Local Area Networks IEEE 802.11

4.4.1 IEEE 802.11k for Radio Resource Measurements

4.4.2 IEEE 802.11n for High Throughput

4.4.3 IEEE 802.11s for Mesh Networks

4.4.4 IEEE 802.11y for High Power Wi-Fi

4.5 WiMAX Wireless Metropolitan Area Networks IEEE 802.16

4.5.1 IEEE 802.16.2 Coexistence

4.5.2 IEEE 802.16h License Exempt

4.5.3 IEEE 802.22 for Wireless Rural Area Networks
4.6 Other Standardization Activities	66
4.6.1 White Spaces Coalition and Wireless Innovation Alliance	66
4.6.2 The New America Foundation and Open Spectrum	67
4.6.3 SDR Forum	68
4.6.4 Third Generation Partnership Project 3GPP	68
4.6.5 European Telecommunications Standards Institute ETSI	68
4.6.6 Academic Research Conferences and Workshops	69

5 Proposed Enablers for Realizing Horizontal Spectrum Sharing

5.1 IEEE 802.11 in Unlicensed Spectrum
 5.1.1 Overview | 72 |
 5.1.2 Physical Layer | 73 |
 5.1.3 Medium Access Control | 74 |
 5.1.4 Learning from 802.11 | 78 |

5.2 IEEE 802.16 in Unlicensed Spectrum
 5.2.1 Coexistence Scenario | 79 |
 5.2.2 Protecting the Beginning of 802.16 MAC Frame | 80 |
 5.2.3 Protecting the 802.16 UL Subframe | 81 |
 5.2.4 Shifting the Contention Slots | 81 |
 5.2.5 Quality of Service, Efficiency, and Fairness | 82 |

5.3 Policies in Spectrum Usage
 5.3.1 Policy Framework | 83 |
 5.3.2 Spectrum Navigation | 84 |
 5.3.3 Reasoning Based Spectrum Navigation | 85 |

5.4 Policy Language | 85 |

5.5 Spectrum Sharing Games
 5.5.1 Related Work | 89 |
 5.5.2 802.11e Coexistence Scenario | 89 |
 5.5.3 Game Overview | 91 |
 5.5.4 Single Stage Game for Frame Based Interaction | 92 |
 5.5.5 Quality-of-service as Utility | 93 |
 5.5.6 Analytic Game Model | 102 |
 5.5.7 Behavior | 110 |
 5.5.8 Equilibrium Analysis | 117 |
 5.5.9 Multi Stage Game Model | 121 |
 5.5.10 Discounting of Future Payoffs | 121 |
 5.5.11 Strategies | 122 |
 5.5.12 Nash Equilibrium in Multi Stage Games | 125 |
 5.5.13 QoS Evaluation of Strategies | 129 |
 5.5.14 Game Approach as Policy | 136 |
 5.5.15 Learning from Spectrum Sharing Games | 144 |

6 Proposed Enablers for Realizing Vertical Spectrum Sharing

6.1 Frequency Division Duplex for Wi-Fi: FDD WLANs | 145 |
 6.2 Operator Assisted Cognitive Radio with Beaconing | 147 |
 6.2.1 Existing Standard Beaconing Concepts | 148 |
Contents

6.2.2 What is a Beacon? 148
6.2.3 Improved Signaling Mechanism with Dual Beacons 149
6.2.4 Beacon Implementation in IEEE 802.11 149
6.2.5 Evaluation 150
6.2.6 Dual Beaconing for the Reuse of TV Bands as Policy 154

6.3 Spectrum Load Smoothing 157
6.3.1 Related Work 157
6.3.2 Enabling Cognitive Radios 158
6.3.3 Spectrum Load Smoothing in the Time Domain 162
6.3.4 Initial Simulations and Convergence Experiments 166
6.3.5 Modeling Spectrum Load Smoothing in Spectrum Sharing Scenarios 170
6.3.6 QoS Support in IEEE 802.11e Coexistence Scenarios 172
6.3.7 SLS with Reservations – Approach to the Reuse of TV Bands 174
6.3.8 SLS Without Reservations – Opportunistic Spectrum Usage Scenario 176
6.3.9 Evaluation of QoS Capabilities 178
6.3.10 Spectrum Load Smoothing as Policy 183
6.3.11 Learning from the Spectrum Load Smoothing Approach 187

7 Our Vision – True Cognitive Radio 189
7.1 Mitola’s Cognition Circle and Related Cognitive Radio Definitions 189
7.2 Cognitive Radios Can Gain from Delay-tolerant Software Radio 192
7.3 DARPA XG Provides Implementation Guidelines, Including the Access Protocol 193
7.3.1 Traceable Decision Making 193
7.3.2 Machine-understandable Radio Semantics 194
7.4 Spectrum Etiquette May Stimulate Cognitive Behavior 203
7.4.1 What is Spectrum Etiquette? 203
7.4.2 Value Orientation 204
7.5 Network Operators May Assist Dynamic Spectrum Access 205
7.6 Business Opportunities 205

8 Concluding Remarks 209

Appendixes
- Appendix A 211
- Appendix B 213

References 217

Index 227