Contents

Preface iv

CHAPTER 1
Introduction 1

1-1 Introduction 1
1-1-1 Basic Components of a Control System 2
1-1-2 Examples of Control-System Applications 2
1-1-3 Open-Loop Control Systems (Nonfeedback Systems) 5
1-1-4 Closed-Loop Control Systems (Feedback Control Systems) 7

1-2 What Is Feedback, and What Are Its Effects? 8
1-2-1 Effect of Feedback on Overall Gain 8
1-2-2 Effect of Feedback on Stability 9
1-2-3 Effect of Feedback on External Disturbance or Noise 10

1-3 Types of Feedback Control Systems 11
1-3-1 Linear versus Nonlinear Control Systems 11
1-3-2 Time-Invariant versus Time-Varying Systems 12

1-4 Summary 14

CHAPTER 2
Mathematical Foundation 16

2-1 Complex-Variable Concept 16
2-1-1 Complex Numbers 16
2-1-2 Complex Variables 18
2-1-3 Functions of a Complex Variable 19
2-1-4 Analytic Function 20
2-1-5 Singularities and Poles of a Function 20
2-1-6 Zeros of a Function 20
2-1-7 Polar Representation 22

2-2 Frequency-Domain Plots 26
2-2-1 Computer-Aided Construction of the Frequency-Domain Plots 26
2-2-2 Polar Plots 27
2-2-3 Bode Plot (Corner Plot or Asymptotic Plot) 32
2-2-4 Real Constant K 34
2-2-5 Poles and Zeros at the Origin, $(s+jw)^{\pm n}$ 34
2-2-6 Simple Zero, $1+j\omega T$ 37
2-2-7 Simple Pole, $1/(1+j\omega T)$ 39

2-3 Introduction to Differential Equations 49
2-3-1 Linear Ordinary Differential Equations 49
2-3-2 Nonlinear Differential Equations 49
2-3-3 First-Order Differential Equations: State Equations 50
2-3-4 Definition of State Variables 50
2-3-5 The Output Equation 51

2-4 Laplace Transform 52
2-4-1 Definition of the Laplace Transform 52
2-4-2 Inverse Laplace Transformation 54
2-4-3 Important Theorems of the Laplace Transform 54

2-5 Inverse Laplace Transform by Partial-Fraction Expansion 57
2-5-1 Partial-Fraction Expansion 57

2-6 Application of the Laplace Transform to the Solution of Linear Ordinary Differential Equations 62
2-6-1 First-Order Prototype System 63
2-6-2 Second-Order Prototype System 64

2-7 Impulse Response and Transfer Functions of Linear Systems 67
2-7-1 Impulse Response 67
2-7-2 Transfer Function (Single-Input, Single-Output Systems) 70
2-7-3 Proper Transfer Functions 71
2-7-4 Characteristic Equation 71
2-7-5 Transfer Function (Multivariable Systems) 71

2-8 Stability of Linear Control Systems 72
2-9 Bounded-Input, Bounded-Output (BIBO) Stability—Continuous-Data Systems 73
2-10 Relationship between Characteristic Equation Roots and Stability 74
2-11 Zero-Input and Asymptotic Stability of Continuous-Data Systems 74
2-12 Methods of Determining Stability 77
2-13 Routh-Hurwitz Criterion 78
2-13-1 Routh’s Tabulation 79
2-13-2 Special Cases when Routh’s Tabulation Terminates Prematurely 80

2-14 MATLAB Tools and Case Studies 84
2-14-1 Description and Use of Transfer Function Tool 84
2-14-2 MATLAB Tools for Stability 85

2-15 Summary 90

3-1 Block Diagrams 104
3-1-1 Typical Elements of Block Diagrams in Control Systems 106
3-1-2 Relation between Mathematical Equations and Block Diagrams 109
3-1-3 Block Diagram Reduction 113
3-1-4 Block Diagram of Multi-Input Systems—Special Case: Systems with a Disturbance 115
3-1-5 Block Diagrams and Transfer Functions of Multivariable Systems 117

3-2 Signal-Flow Graphs (SFGs) 119
3-2-1 Basic Elements of an SFG 119
3-2-2 Summary of the Basic Properties of SFG 120
3-2-3 Definitions of SFG Terms 120
3-2-4 SFG Algebra 123
3-2-5 SFG of a Feedback Control System 124
3-2-6 Relation between Block Diagrams and SFG 124
3-2-7 Gain Formula for SFG 124
3-2-8 Application of the Gain Formula between Output Nodes and Noninput Nodes 127
3-2-9 Application of the Gain Formula to Block Diagrams 128
3-2-10 Simplified Gain Formula 129

3-3 MATLAB Tools and Case Studies 129
3-4 Summary 133

4-1 Introduction to Modeling of Mechanical Systems 148
4-1-1 Translational Motion 148
4-1-2 Rotational Motion 157
4-1-3 Conversion between Translational and Rotational Motions 161
4-1-4 Gear Trains 162
4-1-5 Backlash and Dead Zone (Nonlinear Characteristics) 164
4-2 Introduction to Modeling of Simple Electrical Systems 165
4-2-1 Modeling of Passive Electrical Elements 165
4-2-2 Modeling of Electrical Networks 165
4-3 Modeling of Active Electrical Elements: Operational Amplifiers 172
4-3-1 The Ideal Op-Amp 173
4-3-2 Sums and Differences 173
4-3-3 First-Order Op-Amp Configurations 174
4-4 Introduction to Modeling of Thermal Systems 177
4-4-1 Elementary Heat Transfer Properties 177
4-5 Introduction to Modeling of Fluid Systems 180
4-5-1 Elementary Fluid and Gas System Properties 180
4-6 Sensors and Encoders in Control Systems 189
4-6-1 Potentiometer 189
4-6-2 Tachometers 194
4-6-3 Incremental Encoder 195
4-7 DC Motors in Control Systems 198
4-7-1 Basic Operational Principles of DC Motors 199
4-7-2 Basic Classifications of PM DC Motors 199
4-7-3 Mathematical Modeling of PM DC Motors 201
4-8 Systems with Transportation Lags (Time Delays) 205
4-8-1 Approximation of the Time-Delay Function by Rational Functions 206
4-9 Linearization of Nonlinear Systems 206
4-9-1 Linearization Using Taylor Series: Classical Representation 207
4-9-2 Linearization Using the State Space Approach 207
4-10 Analogies 213
4-11 Case Studies 216
4-12 MATLAB Tools 222
4-13 Summary 223

5-1 Time Response of Continuous-Data Systems: Introduction 253
5-2 Typical Test Signals for the Time Response of Control Systems 254
5-3 The Unit-Step Response and Time-Domain Specifications 256
5-4 Steady-State Error 258
5-4-1 Steady-State Error of Linear Continuous-Data Control Systems 258
5-4-2 Steady-State Error Caused by Nonlinear System Elements 272
5-5 Time Response of a Prototype First-Order System 274
5-6 Transient Response of a Prototype Second-Order System 275
5-6-1 Damping Ratio and Damping Factor 277
5-6-2 Natural Undamped Frequency 278
5-6-3 Maximum Overshoot 280
5-6-4 Delay Time and Rise Time 283
5-6-5 Settling Time 285
5-7 Speed and Position Control of a DC Motor 289
5-7-1 Speed Response and the Effects of Inductance and Disturbance: Open Loop Response 289
5-7-2 Speed Control of DC Motors: Closed-Loop Response 291
5-7-3 Position Control 292
5-8 Time-Domain Analysis of a Position-Control System 293
5-8-1 Unit-Step Transient Response 294
5-8-2 The Steady-State Response 298
5-8-3 Time Response to a Unit-Ramp Input 299
5-8-4 Time Response of a Third-Order System 300
5-9 Basic Control Systems and Effects of Adding Poles and Zeros to Transfer Functions 304
5-9-1 Addition of a Pole to the Forward-Path Transfer Function: Unity-Feedback Systems 305
5-9-2 Addition of a Pole to the Closed-Loop Transfer Function 307
5-9-3 Addition of a Zero to the Closed-Loop Transfer Function 308
5-9-4 Addition of a Zero to the Forward-Path Transfer Function: Unity-Feedback Systems 309
5-10 Dominant Poles and Zeros of Transfer Functions 311
5-10-1 Summary of Effects of Poles and Zeros 313
5-10-2 The Relative Damping Ratio 313
5-10-3 The Proper Way of Neglecting the Insignificant Poles with Consideration of the Steady-State Response 313
5-11 Basic Control Systems Utilizing Addition of Poles and Zeros 314
5-12 MATLAB Tools 319
5-13 Summary 320

CHAPTER 6
The Control Lab 337
6-1 Introduction 337
6-2 Description of the Virtual Experimental System 338
6-2-1 Motor 339
6-2-2 Position Sensor or Speed Sensor 339
6-2-3 Power Amplifier 340
6-2-4 Interface 340
6-3 Description of SIMLab and Virtual Lab Software 340
6-4 Simulation and Virtual Experiments 345
6-4-1 Open-Loop Speed 345
6-4-2 Open-Loop Sine Input 347
6-4-3 Speed Control 350
6-4-4 Position Control 352
6-5 Design Project 1—Robotic Arm 354
6-6 Design Project 2—Quarter-Car Model 357
6-6-1 Introduction to the Quarter-Car Model 357
6-6-2 Closed-Loop Acceleration Control 359
6-6-3 Description of Quarter Car Modeling Tool 360
6-6-4 Passive Suspension 364
6-6-5 Closed-Loop Relative Position Control 365
6-6-6 Closed-Loop Acceleration Control 366
6-7 Summary 367

CHAPTER 7
Root Locus Analysis 372
7-1 Introduction 372
7-2 Basic Properties of the Root Loci (RL) 373
7-3 Properties of the Root Loci 377
7-3-1 \(K = 0 \) and \(K = \pm \infty \) Points 377
7-3-2 Number of Branches on the Root Loci 378
7-3-3 Symmetry of the RL 378
7-3-4 Angles of Asymptotes of the RL: Behavior of the RL at \(|s| = \infty \) 378
7-3-5 Intersection of the Asymptotes (Centroid) 379
7-3-6 Root Loci on the Real Axis 380
7-3-7 Angles of Departure and Angles of Arrival of the RL 380
7-3-8 Intersection of the RL with the Imaginary Axis 380
7-3-9 Breakaway Points (Saddle Points) on the RL 380
7-3-10 The Root Sensitivity 382
Design Aspects of the Root Loci 385
7-4-1 Effects of Adding Poles and Zeros to $G(s)H(s)$ 385
Root Contours (RC): Multiple-Parameter Variation 393
MATLAB Tools and Case Studies 400
Summary 400

CHAPTER 8
Frequency-Domain Analysis 409
8-1 Introduction 409
8-1-1 Frequency Response of Closed-Loop Systems 410
8-1-2 Frequency-Domain Specifications 412
8-2 M_r, ω_r, and Bandwidth of the Prototype Second-Order System 413
8-2-1 Resonant Peak and Resonant Frequency 413
8-2-2 Bandwidth 416
8-3 Effects of Adding a Zero to the Forward-Path Transfer Function 418
8-4 Effects of Adding a Pole to the Forward-Path Transfer Function 424
8-5 Nyquist Stability Criterion: Fundamentals 426
8-5-1 Stability Problem 427
8-5-2 Definition of Encircled and Enclosed 428
8-5-3 Number of Encirclements and Enclosures 429
8-5-4 Principles of the Argument 429
8-5-5 Nyquist Path 433
8-5-6 Nyquist Criterion and the $L(s)$ or the $G(s)H(s)$ Plot 434
8-6 Nyquist Criterion for Systems with Minimum-Phase Transfer Functions 435
8-6-1 Application of the Nyquist Criterion to Minimum-Phase Transfer Functions That Are Not Strictly Proper 436
8-7 Relation between the Root Loci and the Nyquist Plot 437
8-8 Illustrative Examples: Nyquist Criterion for Minimum-Phase Transfer Functions 440
8-9 Effects of Adding Poles and Zeros to $L(s)$ on the Shape of the Nyquist Plot 444
8-10 Relative Stability: Gain Margin and Phase Margin 449
8-10-1 Gain Margin (GM) 451
8-10-2 Phase Margin (PM) 453
8-11 Stability Analysis with the Bode Plot 455
8-11-1 Bode Plots of Systems with Pure Time Delays 458

8-12 Relative Stability Related to the Slope of the Magnitude Curve of the Bode Plot 459
8-12-1 Conditionally Stable System 459
8-13 Stability Analysis with the Magnitude-Phase Plot 462
8-14 Constant-M Loci in the Magnitude-Phase Plane: The Nichols Chart 463
8-15 Nichols Chart Applied to Nonunity-Feedback Systems 469
8-16 Sensitivity Studies in the Frequency Domain 470
MATLAB Tools and Case Studies 472
8-18 Summary 472

CHAPTER 9
Design of Control Systems 487
9-1 Introduction 487
9-1-1 Design Specifications 487
9-1-2 Controller Configurations 489
9-1-3 Fundamental Principles of Design 491
9-2 Design with the PD Controller 492
9-2-1 Time-Domain Interpretation of PD Control 494
9-2-2 Frequency-Domain Interpretation of PD Control 496
9-2-3 Summary of Effects of PD Control 497
9-3 Design with the PI Controller 511
9-3-1 Time-Domain Interpretation and Design of PI Control 513
9-3-2 Frequency-Domain Interpretation and Design of PI Control 514
9-4 Design with the PID Controller 528
9-5 Design with Phase-Lead Controller 532
9-5-1 Time-Domain Interpretation and Design of Phase-Lead Control 534
9-5-2 Frequency-Domain Interpretation and Design of Phase-Lead Control 535
9-5-3 Effects of Phase-Lead Compensation 554
9-5-4 Limitations of Single-Stage Phase-Lead Control 555
9-5-5 Multistage Phase-Lead Controller 555
9-5-6 Sensitivity Considerations 559
9-6 Design with Phase-Lag Controller 561
9-6-1 Time-Domain Interpretation and Design of Phase-Lag Control 561
9-6-2 Frequency-Domain Interpretation and Design of Phase-Lag Control 563
9-6-3 Effects and Limitations of Phase-Lag Control 574
9-7 Design with Lead–Lag Controller 574
9-8 Pole-Zero-Cancellation Design: Notch Filter 576
9-8-1 Second-Order Active Filter 579
9-8-2 Frequency-Domain Interpretation and Design 580
9-9 Forward and Feedforward Controllers 588
9-10 Design of Robust Control Systems 590
9-11 Minor-Loop Feedback Control 601
9-11-1 Rate-Feedback or Tachometer-Feedback Control 601
9-11-2 Minor-Loop Feedback Control with Active Filter 603
9-12 A Hydraulic Control System 605
9-12-1 Modeling Linear Actuator 605
9-12-2 Four-Way Electro-Hydraulic Valve 606
9-12-3 Modeling the Hydraulic System 612
9-12-4 Applications 613
9-13 Controller Design 617
9-13-1 P Control 617
9-13-2 PD Control 621
9-13-3 PI Control 626
9-13-4 PID Control 628
9-14 MATLAB Tools and Case Studies 631
9-15 Plotting Tutorial 647
9-16 Summary 649

CHAPTER 10
State Variable Analysis 673
10-1 Introduction 673
10-2 Block Diagrams, Transfer Functions, and State Diagrams 673
10-2-1 Transfer Functions (Multivariable Systems) 673
10-2-2 Block Diagrams and Transfer Functions of Multivariable Systems 674
10-2-3 State Diagram 676
10-2-4 From Differential Equations to State Diagrams 678
10-2-5 From State Diagrams to Transfer Function 679
10-2-6 From State Diagrams to State and Output Equations 680
10-3 Vector-Matrix Representation of State Equations 682
10-4 State-Transition Matrix 684
10-4-1 Significance of the State-Transition Matrix 685
10-4-2 Properties of the State-Transition Matrix 685
10-5 State-Transition Equation 687
10-5-1 State-Transition Equation Determined from the State Diagram 689
10-6 Relationship between State Equations and High-Order Differential Equations 691
10-7 Relationship between State Equations and Transfer Functions 693
10-8 Characteristic Equations, Eigenvalues, and Eigenvectors 695
10-8-1 Characteristic Equation from a Differential Equation 695
10-8-2 Characteristic Equation from a Transfer Function 696
10-8-3 Characteristic Equation from State Equations 696
10-8-4 Eigenvalues 697
10-8-5 Eigenvectors 697
10-8-6 Generalized Eigenvectors 698
10-9 Similarity Transformation 699
10-9-1 Invariance Properties of the Similarity Transformations 700
10-9-2 Controllability Canonical Form (CCF) 701
10-9-3 Observability Canonical Form (OCF) 703
10-9-4 Diagonal Canonical Form (DCF) 704
10-9-5 Jordan Canonical Form (JCF) 706
10-10 Decompositions of Transfer Functions 707
10-10-1 Direct Decomposition 707
10-10-2 Cascade Decomposition 712
10-10-3 Parallel Decomposition 713
10-11 Controllability of Control Systems 714
10-11-1 General Concept of Controllability 716
10-11-2 Definition of State Controllability 716
10-11-3 Alternate Tests on Controllability 717
10-12 Observability of Linear Systems 719
10-12-1 Definition of Observability 719
10-12-2 Alternate Tests on Observability 720
10-13 Relationship among Controllability, Observability, and Transfer Functions 721
10-14 Invariant Theorems on Controllability and Observability 723
10-15 Case Study: Magnetic-Ball Suspension System 725
10-16 State-Feedback Control 728
10-17 Pole-Placement Design Through State Feedback 730
10-18 State Feedback with Integral Control 735
10-19 MATLAB Tools and Case Studies 741
10-19-1 Description and Use of the State-Space Analysis Tool 741
10-19-2 Description and Use of tfsym for State-Space Applications 748
10-20 Summary 751

INDEX 773

Appendices can be found on this book's companion Web site: www.wiley.com/college/golnaraghi.

APPENDIX A
Elementary Matrix Theory and Algebra A-1
A-1 Elementary Matrix Theory A-1
A-1-1 Definition of a Matrix A-2
A-2 Matrix Algebra A-5
 A-2-1 Equality of Matrices A-5
 A-2-2 Addition and Subtraction of Matrices A-6
 A-2-4 Commutative Law of Matrix (Addition and Subtraction) A-6
 A-2-5 Matrix Multiplication A-6
 A-2-6 Rules of Matrix Multiplication A-7
 A-2-7 Multiplication by a Scalar k A-8
 A-2-8 Inverse of a Matrix (Matrix Division) A-8
 A-2-9 Rank of a Matrix A-9
A-3 Computer-Aided Solutions of Matrices A-9

➤ APPENDIX B
Difference Equations B-1
 B-1 Difference Equations B-1

➤ APPENDIX C
Laplace Transform Table C-1

➤ APPENDIX D
z-Transform Table D-1

➤ APPENDIX E
Properties and Construction of the Root Loci E-1
 E-1 K = 0 and K = ±∞ Points E-1
 E-2 Number of Branches on the Root Loci E-2
 E-3 Symmetry of the Root Loci E-2
 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at |s| = ∞ E-4
 E-5 Intersect of the Asymptotes (Centroid) E-5
 E-6 Root Loci on the Real Axis E-8
 E-7 Angles of Departure and Angles of Arrival of the Root Loci E-9
 E-8 Intersection of the Root Loci with the Imaginary Axis E-11
 E-9 Breakaway Points E-11
 E-9-1 (Saddle Points) on the Root Loci E-11
 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12
 E-10 Calculation of K on the Root Loci E-16

➤ APPENDIX F
General Nyquist Criterion F-1
 F-1 Formulation of Nyquist Criterion F-1
 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4
 F-1-2 Systems with Improper Loop Transfer Functions F-4
 F-2 Illustrative Examples—General Nyquist Criterion
 Minimum and Nonminimum Transfer Functions F-4
 F-3 Stability Analysis of Multiloop Systems F-13

➤ APPENDIX G
ACSYS 2008: Description of the Software G-1
 G-1 Installation of ACSYS G-1
 G-2 Description of the Software G-1
 G-2-1 tfsym G-2
 G-2-2 Statetool G-3
 G-2-3 Controls G-3
 G-2-4 SIMLab and Virtual Lab G-4
 G-3 Final Comments G-4

➤ APPENDIX H
Discrete-Data Control Systems H-1
 H-1 Introduction H-1
 H-2 The z-Transform H-1
 H-2-1 Definition of the z-Transform H-1
 H-2-2 Relationship between the Laplace Transform and the z-Transform H-2
 H-2-3 Some Important Theorems of the z-Transform H-3
 H-2-4 Inverse z-Transform H-5
 H-2-5 Computer Solution of the Partial-Fraction Expansion of Y(z)/z H-7
 H-2-6 Application of the z-Transform to the Solution of Linear Difference Equations H-7
 H-3 Transfer Functions of Discrete-Data Systems H-8
 H-3-1 Transfer Functions of Discrete-Data Systems with Cascade Elements H-12
 H-3-2 Transfer Function of the Zero-Order-Hold H-13
 H-3-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-14
 H-4 State Equations of Linear Discrete-Data Systems H-16
 H-4-1 Discrete State Equations H-16
 H-4-2 Solutions of the Discrete State Equations: Discrete State-Transition Equations H-18
 H-4-3 z-Transform Solution of Discrete State Equations H-19
 H-4-4 Transfer-Function Matrix and the Characteristic Equation H-20
 H-4-5 State Diagrams of Discrete-Data Systems H-22
 H-4-6 State Diagrams for Sampled-Data Systems H-23
 H-5 Stability of Discrete-Data Systems H-26
 H-5-1 BIBO Stability H-26
 H-5-2 Zero-Input Stability H-26
 H-5-3 Stability Tests of Discrete-Data Systems H-27
 H-6 Time-Domain Properties of Discrete-Data