Handbook of 3D Integration

Technology and Applications of 3D Integrated Circuits

Volume 2

Edited by
Philip Garrou, Christopher Bower and Peter Ramm

WILEY-VCH Verlag GmbH & Co. KGaA
Contents

Volume 1

Preface XVII
List of Contributors XIX

1 Introduction to 3D Integration 1
Philip Garrou
1.1 Introduction 1
1.2 Historical Evolution of Stacked Wafer Concepts 3
1.3 3D Packaging vs 3D Integration 4
1.4 Non-TSV 3D Stacking Technologies 6

2 Drivers for 3D Integration 13
Philip Garrou, Susan Vitkavage, and Sitaram Arkalgud
2.1 Introduction 13
2.2 Electrical Performance 13
2.3 Power Consumption and Noise 19
2.4 Form Factor 19
2.5 Lower Cost 22
2.6 Application Based Drivers 22

3 Overview of 3D Integration Process Technology 25
Philip Garrou and Christopher Bower
3.1 3D Integration Terminology 25
3.2 Processing Sequences 28
3.3 Technologies for 3D Integration 34
Contents

1 Through Silicon Via Fabrication 45

4 Deep Reactive Ion Etching of Through Silicon Vias 47
Fred Roozeboom, Michiel A. Blauw, Yann Lamy, Eric van Grunsven,
Wouter Dekkers, Jan F. Verhoeven, Eric(F.) van den Heuvel, Emile van der
Drift, Erwin (W.M.M.) Kessels, and Richard (M.C.M.) van de Sanden
4.1 Introduction 47
4.2 DRIE Equipment and Characterization 54
4.3 DRIE Processing 62
4.4 Practical Solutions in Via Etching 78
4.5 Concluding Remarks 86

5 Laser Ablation 93
Wei-Chung Lo and S.M. Chang
5.1 Introduction 93
5.2 Laser Technology for 3D Packaging 94
5.3 For Si Substrate 94
5.4 Results for 3D Chip Stacking 100
5.5 Reliabilities 103
5.6 The Future 104

6 SiO₂ 107
Robert Wieland
6.1 Introduction 107
6.2 Dielectric CVD 107
6.3 Dielectric Film Properties 115
6.4 3D-Specifics Regarding SiO₂ Dielectrics 116
6.5 Concluding Remarks 119

7 Insulation – Organic Dielectrics 121
Philip Garrou and Christopher Bower
7.1 Parylene 121
7.2 Plasma-Polymerized BCB 125
7.3 Spray-Coated Organic Insulators 126
7.4 Laser-Drilled Organics 128
7.5 Concluding Remarks 130

8 Copper Plating 133
Tom Ritzdorf, Rozalia Beica, and Charles Sharbono
8.1 Introduction 133
8.2 Copper Plating Equipment 134
8.3 Copper Plating Processes 135
8.4 Factors Affecting Copper Plating 141
8.5 Plating Chemistries 144
8.6 Plating Process Requirements 146
8.7 Summary 153
9 Metallization by Chemical Vapor Deposition of W and Cu 157
Armin Klumpp, Robert Wieland, Ramona Ecke, and Stefan E. Schulz

9.1 Introduction 157
9.2 Commercial Precursors 158
9.3 Deposition Process Flow 161
9.4 Complete TSV Metallization Including Filling and Etchback/CMP 169
9.5 Conclusions 172

II Wafer Thinning and Bonding Technology 175

10 Fabrication, Processing and Singulation of Thin Wafers 177
Werner Kröninger

10.1 Applications for Thin Silicon Dies 177
10.2 Principal Facts: Thinning and Wafer Bow 177
10.3 Grinding and Thinning 179
10.4 Stability and Flexibility 183
10.5 Chip Thickness, Theoretical Model, Macroscopic Features 186
10.6 Stabilizing the Thin Wafer: Tapes and Carrier Systems 192
10.7 Separating the Chips: Dicing Influencing the Stability 195
10.8 Conclusions 206
10.9 Summary 206

11 Overview of Bonding Technologies for 3D Integration 209
Jean-Pierre Joly

11.1 Introduction 209
11.2 Direct Bonding 210
11.3 Adhesive and Solder Bonding 216
11.4 Comparison of the Different Bonding Technologies 219

12 Chip-to-Wafer and Wafer-to-Wafer Integration Schemes 223
Thorsten Matthias, Stefan Pargfrieder, Markus Wimplinger, and Paul Lindner

12.1 Decision Criteria for 3D Integration 223
12.2 Enabling Technologies 227
12.3 Integration Schemes for 3D Interconnect 244
12.4 Conclusion 248

13 Polymer Adhesive Bonding Technology 249
James Jian-Qiang Lu, Tim S. Cole, and Ronald J. Gutmann

13.1 Polymer Adhesive Bonding Principle 249
13.2 Polymer Adhesive Bonding Requirements and Materials 250
13.3 Wafer Bonding Technology Using Polymer Adhesives 252
13.4 Bonding Characterizations 253
13.5 Conclusions 258
Volume 2

Bonding with Intermetallic Compounds

Armin Klumpp

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>261</td>
</tr>
<tr>
<td>14.2 Technological Concepts</td>
<td>261</td>
</tr>
<tr>
<td>14.3 Conclusion</td>
<td>269</td>
</tr>
</tbody>
</table>

Integration Processes

Phillip Garrou

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>273</td>
</tr>
<tr>
<td>15.2 Chip-on-Chip Activity</td>
<td>273</td>
</tr>
<tr>
<td>15.2.1 Sony</td>
<td>274</td>
</tr>
<tr>
<td>15.2.2 Infineon</td>
<td>275</td>
</tr>
<tr>
<td>15.3 Imaging Chips with TSV</td>
<td>275</td>
</tr>
<tr>
<td>15.4 Memory</td>
<td>276</td>
</tr>
<tr>
<td>15.4.1 Samsung</td>
<td>276</td>
</tr>
<tr>
<td>15.4.2 Elpida</td>
<td>279</td>
</tr>
<tr>
<td>15.4.3 Tezzaron & Chartered</td>
<td>279</td>
</tr>
<tr>
<td>15.4.4 NEC</td>
<td>279</td>
</tr>
<tr>
<td>15.4.5 Micron</td>
<td>283</td>
</tr>
<tr>
<td>15.5 Microprocessors & Misc. Applications</td>
<td>283</td>
</tr>
<tr>
<td>15.5.1 Intel</td>
<td>283</td>
</tr>
<tr>
<td>15.5.2 IBM</td>
<td>285</td>
</tr>
</tbody>
</table>

Wafer-Level 3D System Integration

Peter Ramm, M. Jürgen Wolf, and Bernhard Wunderle

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>289</td>
</tr>
<tr>
<td>16.1.1 Drivers for the Introduction of 3D System Integration</td>
<td>289</td>
</tr>
<tr>
<td>16.1.2 Technological Concepts</td>
<td>291</td>
</tr>
<tr>
<td>16.2 Wafer-Level 3D System Integration Technologies</td>
<td>291</td>
</tr>
<tr>
<td>16.2.1 Die to Wafer Stacking</td>
<td>292</td>
</tr>
<tr>
<td>16.2.2 Vertical System Integration</td>
<td>298</td>
</tr>
<tr>
<td>16.3 Reliability Issues</td>
<td>308</td>
</tr>
<tr>
<td>16.3.1 Failure of 3D-Integrated Systems</td>
<td>308</td>
</tr>
<tr>
<td>16.3.2 Material Characterization of Thin Layers by Nano-Indentation</td>
<td>310</td>
</tr>
<tr>
<td>16.3.3 Thermo-mechanical Simulation of Through-Silicon Vias</td>
<td>311</td>
</tr>
<tr>
<td>16.4 Conclusions</td>
<td>314</td>
</tr>
</tbody>
</table>

References 314
17 Interconnect Process at the University of Arkansas 319
Susan Burkett and Leonard Schaper
17.1 Introduction 319
17.2 TSV Process Flow 321
17.2.1 Via Formation 321
17.2.2 Via Lining 323
17.2.3 Via Filling 324
17.2.4 Back Side Processing 325
17.2.5 Electrical Testing 327
17.3 Chip Assembly 330
17.4 System Integration 333
17.5 Summary 334
References 334

18 Vertical Interconnection by ASET 339
Kenji Takahashi and Kazumasa Tanida
18.1 Introduction 339
18.2 Fabrication Process Overview 341
18.3 Via Filling by Cu Electrodeposition 341
18.3.1 Experimental 342
18.3.2 Results and Discussion 343
18.4 Handling of Thin Wafer 345
18.4.1 Wafer Debonding Method 345
18.4.2 Estimation of Tensile Stress 346
18.4.3 Strength of Thinned Chip 347
18.4.4 Discussion 348
18.5 3D Chip Stacking 348
18.5.1 Technical Issues of 3D Chip Stacking 348
18.5.2 Bondability on 20-μm-Pitch Interconnection 349
18.5.3 NCP Preform Process for Layered Micro Thin Gaps 354
18.5.4 Fabrication of Vertical Interconnection 358
18.5.5 Reliability of Vertical Interconnection 360
18.6 Thermal Performance of Chip Stack Module 363
18.6.1 Measurement of Thermal Resistance 363
18.6.2 Effect of Passivation Layer 364
18.6.3 Investigation of a Novel Cooling Interface 365
18.7 Electric Performance of Vertical Interconnection 367
18.7.1 DC Performance through Multilayered TVs 368
18.7.2 AC Performance through Multilayered TVs 369
18.8 Practical Application of Through-vias 370
18.9 Conclusion 371
References 372

19 3D Integration at CEA-LETI 375
Barbara Charlet, Lèa Di Cioccio, Patrick Leduc, and David Henry
19.1 Introduction 375
20 Lincoln Laboratory's 3D Circuit Integration Technology 393
James Burns, Brian Aull, Robert Berger, Nisha Checka, Chang-Lee Chen, Chenson Chen, Pascale Gouker, Craig Keast, Jeffrey Knecht, Antonio Soares, Vyshnavi Suntharalingam, Brian Tyrrell, Keith Warner, Bruce Wheeler, Peter Wyatt, and Donna Yost
20.1 Introduction 393
20.2 Lincoln Laboratory's Wafer-Scale 3D Circuit Integration Technology 394
20.2.1 3D Fabrication Process 394
20.2.2 3D Enabling Technologies 396
20.2.3 3D Technology Scaling 401
20.3 Transferred FDSOI Transistor and Device Properties 402
20.4 3D Circuit and Device Results 406
20.4.1 3D-LADAR Chip 406
20.4.2 1024 x 1024 Visible Imager 407
20.4.3 Heterogeneous Integration 409
20.5 Summary 409
References 410

21 3D Integration Technologies at IMEC 413
Eric Beyne
21.1 Introduction 413
21.2 Key Requirements for 3D-Interconnect Technologies 415
21.3 3D Technologies at IMEC 418
21.3.1 3D-SIP for System-Level Miniaturization 418
21.3.2 3D-WLP 420
References 429

22 Fabrication Using Copper Thermo-Compression Bonding at MIT 431
Chuan Seng Tan, Andy Fan, and Rafael Reif
22.1 Introduction 431
22.2 Copper Thermo-Compression Bonding 431
22.2.1 Bonding Procedures 432
22.2.2 Bonding Mechanism 432
24.8 Tezzaron’s TSVs 467
 24.8.1 Via First TSVs 467
 24.8.2 TSVs as Thinning Control 468
 24.8.3 TSVs as Alignment Markers 468
 24.8.4 BEOL and FEOL 469
 24.8.5 SuperVia TSVs 470
 24.8.6 SuperContact TSVs 471
 24.8.7 TSV Characteristics and Scaling 472
24.9 Stacking Process Flow Details (with SuperContacts) 472
24.10 Stacking Process Flow with SuperVias 473
24.11 Additional Stacking Process Issues 474
 24.11.1 Planarity 474
 24.11.2 Edge Grinding 478
 24.11.3 Alignment 478
 24.11.4 Bondpoint Area 480
 24.12 Working 3D Devices 481
24.13 Qualification Results 481
 24.13.1 Bonded Wafer Shear Testing 482
 24.13.2 Delamination: High Power Caused (Self-Forced) 483
 24.13.3 Transistor Performance Drift 483
 24.13.4 Life Testing 485
 24.13.5 Highly Accelerated Stress Testing (HAST) 485
 24.14 FaStack Summary 485
 24.15 Abbreviations and Definitions 486

25 3D Integration at Ziptronix, Inc. 487
 Paul Enquist
 25.1 Introduction 487
 25.2 Direct Bonding 489
 25.2.1 Direct Oxide Wafer Bonding 490
 25.2.2 Low-Temperature Direct Oxide Wafer Bonding 490
 25.3 Direct Bond Interconnect 497
 25.3.1 DBI® Process Flow 498
 25.3.2 DBI® Physical and Electrical Data 499
 25.3.3 DBI® Reliability Data 501
 25.4 Process Cost and Supply Chain Considerations 501
 References 502

26 3D Integration ZyCube 505
 Makoto Motoyoshi
 26.1 Introduction 505
 26.2 Current 3D-LSI–New CSP Device for Sensors 505
 26.2.1 New Chip Size Package (ZyCSP) Process 508
 26.2.2 TSV Filling Process 510
 26.2.3 New Chip Size Package (ZyCSP) 512
 26.3 Future 3D-LSI Technology 512
 References 515
Design, Performance, and Thermal Management 517

27 Design for 3D Integration at North Carolina State University 519

Paul D. Franzon

27.1 Why 3D? 519

27.2 Interconnect-Driven Case Studies 521

27.3 Computer-Aided Design 525

27.4 Discussion 526

References 527

28 Modeling Approaches and Design Methods for 3D System Design 529

Peter Schneider and Günter Elst

28.1 Introduction 529

28.2 Modeling and Simulation 530

28.2.1 Modular Modeling Approach 532

28.2.2 Simulation on Component Level 534

28.2.3 Influence of Thermal Stress on MEMS 549

28.2.4 Simulation of Complex Stack Structures 552

28.2.5 Methods for Computer-Aided Model Generation for System Level 553

28.2.6 Model Validation 559

28.2.7 Integration of Circuit or Behavioral Models into the Design Flow 559

28.3 Design Methods for 3D Integration 565

28.3.1 Low Power Design 565

28.3.2 Design for Testability 568

28.4 Conclusions 571

References 572

29 Multiproject Circuit Design and Layout in Lincoln Laboratory’s 3D Technology 575

James Burns, Robert Berger, Nisha Checka, Craig Keast, Brian Tyrrell, and Bruce Wheeler

29.1 Introduction 575

29.2 3D Design and Layout Practice 575

29.3 Design and Submission Procedures 578

References 581

30 Computer-Aided Design for 3D Circuits at the University of Minnesota 583

Sachin S. Sapatnekar

30.1 Introduction 583

30.2 Thermal Analysis of 3D Designs 584

30.3 Thermally-Driven Placement and Routing of 3D Designs 586

30.3.1 Thermally-Driven 3D Placement 587

30.3.2 Automated Thermal Via Insertion for Heat Removal 589

30.3.3 Thermally-Driven 3D Routing 590

30.4 Power Grid Design in 3D 594

30.5 Conclusion 596

References 596
31 Electrical Performance of 3D Circuits

Arne Heittmann and Ulrich Ramacher

31.1 Introduction
- Example 1: Baseband Processors in Mobile Phones 599
- Example 2: Advanced Man–Machine Interface for Cell Phones 603

31.2 3D Chip Stack Technology
- 3D Process with Self-Adjusting Back-Side Contacts 608
- Wafer-Preparation 608
- CMOS Processing and Front Side Metallization 610
- Wafer Thinning 611
- Via Etching and Sidewall Isolation 611
- Test and Soldering 612

31.3 Electrical Performance of 3D Contacts
- Isolation, Cross Resistance and Via-Metal Resistance 613
- Solder Connection and Cu Wires 614
- Via and Solder Joint 614
- Via Bridge 616
- Via Leakage 616
- Equivalent Circuit for Simulation 617

31.4 Summary and Conclusion
- The Vision Cube 619

References 620

32 Testing of 3D Circuits

T.M. Mak

32.1 Introduction
- Yield and 3D Integration 623
- Known Good Die (KGD) 627
- Wafer Stacking Versus Die Stacking 629
- Defect Tolerant and Fault Tolerant 3D Stacks 632

References 633

33 Thermal Management of Vertically Integrated Packages

Thomas Brunschwiler and Bruno Michel

33.1 Introduction
- Power Dissipation in Electronic Components 635
- Motivation for Thermal Management 636
- Fundamentals of Heat Transfer 637
- Conduction 637
- Convection 638
- Thermal-Packaging Modeling 639
- Temperature and Power Map Prediction During IC Design 639
- Design and Optimization of Thermal Packages 639
- Metrology in Thermal Packaging 640
- Characterization of Thermal Components 640
33.4.2 Power Map Measurement 640
33.5 Thermal Packaging Components 641
33.5.1 Thermal Interface Materials 641
33.5.2 Advanced Air Heat Sinks 643
33.5.3 Forced Convective Liquid Cold Plates 643
33.6 Heat Removal in Vertically-Integrated Packages 644
33.6.1 Main Challenges for Traditional Back-Side Heat Removal 644
33.6.2 Heat Conduction Improvement with Thermal Vias (TV) 646
33.6.3 Interlayer Thermal Management 646
33.6.4 Conclusion 648
References 648

V Applications 651

34 3D and Microprocessors 653
Pat Morrow and Sriam Muthukumar
34.1 Introduction 653
34.2 Design of 3D Microprocessor Systems 654
34.2.1 Introduction 654
34.2.2 Example of Logic + Memory Stacking: Stacked Cache 655
34.2.3 "Logic + Logic" Stacking: Examples of Partitioning a Microprocessor into Two Strata 657
34.3 Fabrication of 3D Microprocessor Systems 661
34.3.1 Introduction 661
34.3.2 Wafer Stacking Using Copper Bonding 664
34.3.3 Die Stacking via Metal Bonding 668
34.4 Conclusions 670
References 673

35 3D Memories 675
Mark Tuttle
35.1 Introduction 675
35.2 Applications 675
35.3 Redistribution Layer 679
35.4 Through Wafer Interconnect 681
35.5 Stacking 684
35.6 Additional Issues 686
35.7 Future of 3D Memories 688

36 3D Read-Out Integrated Circuits for Advanced Sensor Arrays 689
Christopher Bower
36.1 Introduction 689
36.2 Current Activity in 3D ROICs 690
36.2.1 The DARPA VISA Program 690
36.2.2 The DRS/RTI Infrared Focal Plane Array 692
36.2.3 MIT Lincoln Laboratory’s 3D Imagers 697
36.2.4 Tohoku University’s Neuromorphic Vision Chip 698
36.2.5 3D ROICs for High Energy Physics 700
36.3 Conclusions 700
References 700

37 Power Devices 703
Marc de Samber, Eric van Grunsven, and David Heyes
37.1 Introduction 703
37.2 Wafer Level Packaging for Discrete Semiconductor Devices 704
37.3 Packaging for PowerMOSFET Devices 704
37.4 Chip Size Packaging of Vertical MOSFETs 707
37.5 Metal TWI Process for Vertical MOSFETs 711
37.6 Further Evaluation of the TWI MOSFET CSPs 718
37.7 Outlook 720
References 721

38 Wireless Sensor Systems – The e-CUBES Project 723
Adrian M. Ionescu, Eric Beyne, Tierry Hilt, Thomas Herndl, Pierre Nicole,
Mihai Sanduleanu, Anton Sauer, Herbert Shea, Maaike Taklo, Co Van Veen,
Josef Weber, Werner Weber, Jürgen M. Wolf, and Peter Ramm
38.1 Introduction 723
38.2 e-CUBES Concept 725
38.3 Enabling 3D Integration Technologies 727
38.4 e-CUBES GHZ Radios 731
38.4.1 2.4 GHz Radio for Automotive Applications 731
38.4.2 17 GHz Ultra-Low Power e-Cube Radio for Wireless Body
Area Network 733
38.4.3 The Role of RF MEMS in e-CUBES 734
38.5 e-CUBES Applications and Roadmap 735
38.5.1 Airborne and Space Demonstrator 737
38.5.2 Automotive Demonstrator 744
38.5.3 Health and Fitness Demonstrator 744
38.6 Conclusion 745
References 746

Conclusions 747
Phil Garrou, Christopher Bower, and Peter Ramm

Index 749