Noise Temperature Theory and Applications for Deep Space Communications Antenna Systems

Tom Y. Otoshi
### Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xv</td>
</tr>
<tr>
<td><strong>CHAPTER 1</strong></td>
<td></td>
</tr>
<tr>
<td>Introductory Topics</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Antenna Noise Temperature as Functions of Pointing Angles</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Zenith Formula</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Sky Brightness Temperature</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3 Ground Brightness Temperature</td>
<td>11</td>
</tr>
<tr>
<td>1.1.4 Formula for Nonzenith Pointing Angles</td>
<td>17</td>
</tr>
<tr>
<td>1.1.5 Tipping Curve Applications</td>
<td>22</td>
</tr>
<tr>
<td>1.2 Cosmic Background Noise Temperature</td>
<td>37</td>
</tr>
<tr>
<td>1.2.1 Introduction</td>
<td>37</td>
</tr>
<tr>
<td>1.2.2 Calibration Equation</td>
<td>37</td>
</tr>
<tr>
<td>1.2.3 Experimental Results</td>
<td>39</td>
</tr>
<tr>
<td>1.2.4 Commentary</td>
<td>39</td>
</tr>
<tr>
<td>1.3 Portable Microwave Test Packages</td>
<td>40</td>
</tr>
<tr>
<td>1.3.1 Introduction</td>
<td>40</td>
</tr>
<tr>
<td>1.3.2 Test-Package Descriptions</td>
<td>41</td>
</tr>
<tr>
<td>1.3.3 Test Configurations and Test Procedure</td>
<td>42</td>
</tr>
<tr>
<td>1.3.4 Noise-Temperature Measurement Method</td>
<td>44</td>
</tr>
<tr>
<td>1.3.5 Noise-Temperature Measurement Results</td>
<td>47</td>
</tr>
<tr>
<td>1.3.6 Concluding Remarks</td>
<td>50</td>
</tr>
<tr>
<td>1.4 Dichroic Plate in a Beam-Waveguide Antenna System</td>
<td>50</td>
</tr>
<tr>
<td>1.4.1 Introduction</td>
<td>50</td>
</tr>
<tr>
<td>1.4.2 Background</td>
<td>51</td>
</tr>
<tr>
<td>1.4.3 Analytical Method</td>
<td>54</td>
</tr>
<tr>
<td>1.4.4 Experimental Work</td>
<td>62</td>
</tr>
<tr>
<td>1.4.5 Conclusions</td>
<td>66</td>
</tr>
<tr>
<td>References</td>
<td>66</td>
</tr>
<tr>
<td>Selected Bibliography</td>
<td>69</td>
</tr>
</tbody>
</table>
## CHAPTER 2
### Reflector Surfaces

2.1 Perforated Panels
   2.1.1 Introduction 71
   2.1.2 Old Calculation Method 73
   2.1.3 New Calculation Method 74
   2.1.4 Perforated-Plate and Perforated-Panel Geometries 80
   2.1.5 Results 82
   2.1.6 Concluding Remarks 86

2.2 Solid Panels
   2.2.1 Basic Noise Temperature Relationships 88
   2.2.2 Dependence on Polarization and Incidence Angle 93
   2.2.3 Electrical Conductivity of Various Metals 99

2.3 Painted Panels
   2.3.1 Background on Paint Study 108
   2.3.2 Background on DSN Antennas 108
   2.3.3 Excess Noise Temperature and Added Gain Loss 110
   2.3.4 Results and Performance Characterizations 113
   2.3.5 Conclusions 130

2.4 Wet Panels
   2.4.1 Theoretical Studies 131
   2.4.2 Experimental Studies 132

References 134

## CHAPTER 3
### Noise Temperature Experiments

3.1 Horns of Different Gains at f1
   3.1.1 Introduction 137
   3.1.2 Analytical Procedure and Results 137
   3.1.3 Experimental Work 144
   3.1.4 Determination of Strut Contribution 147
   3.1.5 Conclusions 151

3.2 Bird Net Cover for BWG Antennas
   3.2.1 Introduction 152
   3.2.2 Description of the Net Cover 152
   3.2.3 Test Results 153
   3.2.4 Concluding Remarks 155

3.3 G/T Improvement Task
   3.3.1 Introduction 156
   3.3.2 Test Configurations and Test Results 157
   3.3.3 Summary and Recommendations 171

3.4 Measured Sun Noise Temperature at 32 GHz
   3.4.1 Introduction 172
   3.4.2 Gain Reduction Methods 173
CHAPTER 4
Mismatch Error Analyses 189

4.1 Antenna System Noise Temperature Calibration Mismatch Errors 189
4.1.1 Introduction 189
4.1.2 Review 190
4.1.3 Antenna System Noise Temperature Measurements 196
4.1.4 Antenna Efficiency Measurements 205
4.1.5 Applications 210
4.1.6 Concluding Remarks 221

4.2 Equivalent Source Noise Temperature at Output of Cascaded Lossy Networks 222
4.2.1 Matched Case 222
4.2.2 Mismatched Case 224

4.3 Effective Input Noise Temperature at Input of Cascaded Lossy Networks 229
4.3.1 Matched Case 229
4.3.2 General Mismatched Case 231

References 233

CHAPTER 5
Network Analysis Topics 235

5.1 Two-Port Network Containing Two Internal Paths 235
5.1.1 Introduction and Background 235
5.1.2 Dissipative Power Ratios of Four-, Three-, and Two-Port Networks 235
5.1.3 Power Flow (PF) Method 239
5.1.4 Voltage Wave (VW) Method 242
5.1.5 Sample Cases 246
5.1.6 Example of the Effects of a Mismatched Component in Path 1 249
5.1.7 Conclusions 252

5.2 Three-Port Network with Two External Noise Sources 252
5.2.1 Introduction 252
5.2.2 Properties of an Ideal Four-Port Coupler 253
5.2.3 Two External Noise Source Outputs Travel Common Paths 254
5.2.4 Two External Noise Source Outputs Travel Individual Paths 262
5.2.5 Conclusions 265

References 266