Introduction to Flat Panel Displays

By

Jiun-Haw Lee
National Taiwan University, Taiwan

David N. Liu
Industrial Technology Research Institute, Taiwan

Shin-Tson Wu
University of Central Florida, USA

John Wiley & Sons, Ltd
Contents

Series Editor's Foreword xi
About the authors xiii
Preface xv
Acknowledgements xvii

1 Introduction 1
 1.1 Flat panel displays 1 1
 1.2 Emissive and nonemissive displays 3
 1.3 Display specifications 3
 1.3.1 Physical parameters 3
 1.3.2 Brightness and color 5
 1.3.3 Contrast ratio 5
 1.3.4 Spatial and temporal characteristics 5
 1.3.5 Efficiency and power consumption 6
 1.3.6 Flexible displays 6
 1.4 Applications of flat panel displays 6
 1.4.1 Liquid crystal displays 7
 1.4.2 Light-emitting diodes 7
 1.4.3 Plasma display panels 8
 1.4.4 Organic light-emitting devices 8
 1.4.5 Field emission displays 9
 References 9

2 Color science and engineering 11
 2.1 Introduction 11
 2.2 The eye 12
 2.3 Colorimetry 15
 2.3.1 Trichromatic space 15
 2.3.2 CIE 1931 colorimetric observations 16
 2.3.3 CIE 1976 uniform color system 19
 2.3.4 Color saturation and color gamut 21
 2.3.5 Light sources 22
3 Thin-film transistors

3.1 Introduction 31
3.2 Basic concepts of crystallized semiconductor materials 31
 3.2.1 Band structure of crystallized semiconductors 32
 3.2.2 Intrinsic and extrinsic semiconductors 36
3.3 Disordered semiconductors 38
 3.3.1 Amorphous silicon 39
 3.3.2 Polycrystalline silicon 41
3.4 Thin-film transistor characteristics 43
3.5 Passive matrix and active matrix driving schemes 47
3.6 Non-silicon-based thin-film transistors 53
Homework problems 55
References 56

4 Liquid crystal displays

4.1 Introduction 57
4.2 Transmissive thin-film transistor liquid crystal displays 58
4.3 Liquid crystal materials 60
 4.3.1 Phase transition temperatures 60
 4.3.2 Eutectic mixtures 61
 4.3.3 Dielectric constants 62
 4.3.4 Elastic constants 65
 4.3.5 Rotational viscosity 65
 4.3.6 Optical properties 66
 4.3.7 Refractive indices 67
 4.3.7.1 Wavelength effect 67
 4.3.7.2 Temperature effect 68
4.4 Liquid crystal alignment 70
4.5 Homogeneous cell 71
 4.5.1 Phase retardation effect 72
 4.5.2 Voltage-dependent transmittance 73
4.6 Twisted nematic 73
 4.6.1 Optical transmittance 74
 4.6.2 Viewing angle 75
 4.6.3 Film-compensated TN cells 76
4.7 In-plane switching 78
 4.7.1 Device structure 78
 4.7.2 Voltage-dependent transmittance 79
 4.7.3 Viewing angle 79
 4.7.4 Phase compensation films 80
4.8 Fringe field switching 81
4.9 Vertical alignment
 4.9.1 Voltage-dependent transmittance 83
 4.9.2 Response time 83
 4.9.3 Overdrive and undershoot voltage method 85
 4.9.4 Multidomain vertical alignment 86
4.10 Optically compensated bend cell 88
 4.10.1 Voltage-dependent transmittance 88
 4.10.2 Compensation films for OCB 89
 4.10.3 No-bias bend cell 91
4.11 Transflective liquid crystal displays 91
 4.11.1 Introduction 91
 4.11.2 Dual cell gap transflective LCDs 93
 4.11.3 Single cell gap transflective LCDs 95
4.12 Future directions 101
Homework problems 101
References 103

5 Plasma display panels 109
5.1 Introduction 109
5.2 Physics of gas discharge
 5.2.1 I-V characteristics 110
 5.2.2 Penning reaction and Paschen curve 111
 5.2.3 Priming mechanism 112
5.3 Plasma display panels 112
 5.3.1 DC PDP 112
 5.3.2 AC PDP 113
 5.3.3 Panel processes 115
5.4 Front plate techniques 117
 5.4.1 Substrate 118
 5.4.2 Sustain electrode 118
 5.4.3 Dielectric 119
 5.4.4 Protection layer 119
5.5 Rear plate techniques 120
 5.5.1 Substrate 121
 5.5.2 Address electrode 121
 5.5.3 Dielectric 121
 5.5.4 Barrier rib 122
 5.5.5 Phosphor 124
5.6 Assembly and aging techniques 126
 5.6.1 Sealing layer formation and panel alignment 126
 5.6.2 Sealing, gas purging and display gas filling 127
 5.6.3 Aging 128
5.7 System techniques 128
 5.7.1 Cell operation mechanism 129
 5.7.2 Driving 130
 5.7.3 Energy saving 130
 5.7.4 PDP issues 132
Homework problems 132
References 132
6 Light-emitting diodes 137
6.1 Introduction 137
6.2 Material systems 140
 6.2.1 AlGaAs and AlGaInP material systems for red and yellow LEDs 142
 6.2.2 GaN-based systems for green, blue and UV LEDs 143
 6.2.3 White LEDs 145
6.3 Diode characteristics 147
 6.3.1 The p-layer and n-layer 148
 6.3.2 Depletion region 149
 6.3.3 J–V characteristics 152
 6.3.4 Heterojunction structures 153
 6.3.5 Quantum well, quantum wire and quantum dot structures 154
6.4 Light-emitting characteristics 155
 6.4.1 Recombination model 156
 6.4.2 L–J characteristics 157
 6.4.3 Spectral characteristics 158
6.5 Device fabrication 161
 6.5.1 Epitaxy 161
 6.5.2 Process flow and device structure design 164
 6.5.3 Extraction efficiency improvement 165
 6.5.4 Package 167
6.6 Applications 168
 6.6.1 Traffic signals, electronic signage and huge displays 169
 6.6.2 LCD backlight 169
 6.6.3 General lighting 172
Homework problems 173
References 174

7 Organic light-emitting devices 177
7.1 Introduction 177
7.2 Energy states in organic materials 178
7.3 Photophysical processes 179
 7.3.1 Franck–Condon principle 180
 7.3.2 Fluorescence and phosphorescence 182
 7.3.3 Jablonski diagram 183
 7.3.4 Intermolecular processes 184
 7.3.4.1 Energy transfer process 184
 7.3.4.2 Excimer and exciplex formation 185
 7.3.4.3 Quenching process 187
 7.3.5 Quantum yield calculation 187
7.4 Carrier injection, transport and recombination 189
 7.4.1 Richardson–Schottky thermionic emission 190
 7.4.2 SCLC, TCLC and PF mobility 192
 7.4.3 Charge recombination 193
 7.4.4 Electromagnetic wave radiation 193
7.5 Structure, fabrication and characterization 195
 7.5.1 Device structure 196
 7.5.1.1 Two-layer OLED 197
 7.5.1.2 Dopant in the matrix as the EML 198
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.1.3 HIL, EIL and p–i–n structure</td>
<td>200</td>
</tr>
<tr>
<td>7.5.1.4 Top-emission and transparent OLEDs</td>
<td>203</td>
</tr>
<tr>
<td>7.5.2 Polymer OLEDs</td>
<td>204</td>
</tr>
<tr>
<td>7.5.3 Device fabrication</td>
<td>205</td>
</tr>
<tr>
<td>7.5.3.1 Thin-film formation</td>
<td>206</td>
</tr>
<tr>
<td>7.5.3.2 Encapsulation and passivation</td>
<td>209</td>
</tr>
<tr>
<td>7.5.3.3 Device structures for AM driving</td>
<td>210</td>
</tr>
<tr>
<td>7.5.4 Electrical and optical characteristics</td>
<td>211</td>
</tr>
<tr>
<td>7.5.5 Degradation mechanisms</td>
<td>213</td>
</tr>
<tr>
<td>7.6 Improvement of internal quantum efficiency</td>
<td>218</td>
</tr>
<tr>
<td>7.6.1 Phosphorescent OLEDs</td>
<td>218</td>
</tr>
<tr>
<td>7.6.2 Tandem structure</td>
<td>220</td>
</tr>
<tr>
<td>7.6.3 White OLEDs</td>
<td>222</td>
</tr>
<tr>
<td>7.7 Improvement of extraction efficiency</td>
<td>224</td>
</tr>
<tr>
<td>Homework problems</td>
<td>225</td>
</tr>
<tr>
<td>References</td>
<td>226</td>
</tr>
<tr>
<td>8 Field emission displays</td>
<td>233</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>233</td>
</tr>
<tr>
<td>8.2 Physics of field emission</td>
<td>233</td>
</tr>
<tr>
<td>8.2.1 Work function and field enhancement</td>
<td>233</td>
</tr>
<tr>
<td>8.2.2 Vacuum mechanism</td>
<td>236</td>
</tr>
<tr>
<td>8.3 FED structure and display mechanism</td>
<td>237</td>
</tr>
<tr>
<td>8.4 Emitter</td>
<td>238</td>
</tr>
<tr>
<td>8.4.1 Spindt emitter</td>
<td>239</td>
</tr>
<tr>
<td>8.4.2 CNT emitter</td>
<td>240</td>
</tr>
<tr>
<td>8.4.3 Surface conduction emitter</td>
<td>243</td>
</tr>
<tr>
<td>8.5 Panel process</td>
<td>244</td>
</tr>
<tr>
<td>8.6 Field emission array plate techniques</td>
<td>247</td>
</tr>
<tr>
<td>8.7 Phosphor plate techniques</td>
<td>248</td>
</tr>
<tr>
<td>8.8 Assembly and aging techniques</td>
<td>249</td>
</tr>
<tr>
<td>8.8.1 Spacer</td>
<td>251</td>
</tr>
<tr>
<td>8.8.2 Sealing layer formation and panel alignment</td>
<td>251</td>
</tr>
<tr>
<td>8.8.3 Sealing</td>
<td>252</td>
</tr>
<tr>
<td>8.8.4 Evacuation and sealing off</td>
<td>252</td>
</tr>
<tr>
<td>8.8.5 Aging</td>
<td>253</td>
</tr>
<tr>
<td>8.9 System techniques</td>
<td>253</td>
</tr>
<tr>
<td>Homework problems</td>
<td>254</td>
</tr>
<tr>
<td>References</td>
<td>254</td>
</tr>
</tbody>
</table>

Index

- Index: 259