Self-Normalized Processes

Limit Theory and Statistical Applications
Contents

1 Introduction ... 1

Part I Independent Random Variables

2 Classical Limit Theorems, Inequalities and Other Tools 7
 2.1 Classical Limit Theorems ... 7
 2.1.1 The Weak Law, Strong Law and Law of the Iterated
 Logarithm ... 8
 2.1.2 The Central Limit Theorem ... 9
 2.1.3 Cramér's Moderate Deviation Theorem 11
 2.2 Exponential Inequalities for Sample Sums ... 11
 2.2.1 Self-Normalized Sums ... 11
 2.2.2 Tail Probabilities for Partial Sums ... 13
 2.3 Characteristic Functions and Expansions Related to the CLT 17
 2.3.1 Continuity Theorem and Weak Convergence 18
 2.3.2 Smoothing, Local Limit Theorems and Expansions 19
 2.4 Supplementary Results and Problems ... 21

3 Self-Normalized Large Deviations ... 25
 3.1 A Classical Large Deviation Theorem for Sample Sums 25
 3.2 A Large Deviation Theorem for Self-Normalized Sums 27
 3.2.1 Representation by Supremum over Linear Functions
 of (S_n, V_n^2) .. 27
 3.2.2 Proof of Theorem 3.1 .. 28
 3.3 Supplementary Results and Problems ... 31

4 Weak Convergence of Self-Normalized Sums ... 33
 4.1 Self-Normalized Central Limit Theorem 33
 4.2 Non-Normal Limiting Distributions for Self-Normalized Sums 37
 4.3 Supplementary Results and Problems ... 38
5 Stein's Method and Self-Normalized Berry–Esseen Inequality

5.1 Stein’s Method
5.1.1 The Stein Equation
5.1.2 Stein’s Method: Illustration of Main Ideas
5.1.3 Normal Approximation for Smooth Functions

5.2 Concentration Inequality and Classical Berry–Esseen Bound

5.3 A Self-Normalized Berry–Esseen Inequality
5.3.1 Proof: Outline of Main Ideas
5.3.2 Proof: Details

5.4 Supplementary Results and Problems

6 Self-Normalized Moderate Deviations and Laws of the Iterated Logarithm

6.1 Self-Normalized Moderate Deviations: Normal Case
6.1.1 Proof of the Upper Bound
6.1.2 Proof of the Lower Bound

6.2 Self-Normalized Moderate Deviations: Stable Case
6.2.1 Preliminary Lemmas
6.2.2 Proof of Theorem 6.6

6.3 Self-Normalized Laws of the Iterated Logarithm

6.4 Supplementary Results and Problems

7 Cramér-Type Moderate Deviations for Self-Normalized Sums

7.1 Self-Normalized Cramér-Type Moderate Deviations

7.2 Proof of Theorems
7.2.1 Proof of Theorems 7.2, 7.4 and Corollaries
7.2.2 Proof of Theorem 7.1
7.2.3 Proof of Propositions

7.3 Application to Self-Normalized LIL

7.4 Cramér-Type Moderate Deviations for Two-Sample t-Statistics

7.5 Supplementary Results and Problems

8 Self-Normalized Empirical Processes and U-Statistics

8.1 Self-Normalized Empirical Processes

8.2 Self-Normalized U-Statistics
8.2.1 The Hoeffding Decomposition and Central Limit Theorem

8.2.2 Self-Normalized U-Statistics and Berry–Esseen Bounds

8.2.3 Moderate Deviations for Self-Normalized U-Statistics

8.3 Proofs of Theorems 8.5 and 8.6
8.3.1 Main Ideas of the Proof
8.3.2 Proof of Theorem 8.6
8.3.3 Proof of Theorem 8.5
8.3.4 Proof of Proposition 8.7

8.4 Supplementary Results and Problems
Part II Martingales and Dependent Random Vectors

9 Martingale Inequalities and Related Tools ... 123
 9.1 Basic Martingale Theory ... 123
 9.1.1 Conditional Expectations and Martingales 123
 9.1.2 Martingale Convergence and Inequalities 125
 9.2 Tangent Sequences and Decoupling Inequalities 125
 9.2.1 Construction of Decoupled Tangent Sequences 126
 9.2.2 Exponential Decoupling Inequalities 126
 9.3 Exponential Inequalities for Martingales 128
 9.3.1 Exponential Inequalities via Decoupling 128
 9.3.2 Conditionally Symmetric Random Variables 132
 9.3.3 Exponential Supermartingales and Associated Inequalities 134
 9.4 Supplementary Results and Problems ... 135

10 A General Framework for Self-Normalization 137
 10.1 An Exponential Family of Supermartingales Associated with
 Self-Normalization ... 137
 10.1.1 The I.I.D. Case and Another Derivation of (3.8) 137
 10.1.2 A Representation of Self-Normalized Processes
 and Associated Exponential Supermartingales 138
 10.2 Canonical Assumptions and Related Stochastic Models 139
 10.3 Continuous-Time Martingale Theory ... 140
 10.3.1 Doob–Meyer Decomposition and Locally
 Square-Integrable Martingales ... 141
 10.3.2 Inequalities and Stochastic Integrals 143
 10.4 Supplementary Results and Problems ... 146

11 Pseudo-Maximization via Method of Mixtures 149
 11.1 Pseudo-Maximization and Laplace’s Method 149
 11.2 A Class of Mixing Densities ... 150
 11.3 Application of Method of Mixtures to Boundary Crossing
 Probabilities ... 152
 11.3.1 The Robbins–Siegmund Boundaries for Brownian Motion 152
 11.3.2 Extensions to General Self-Normalized Processes 154
 11.4 Supplementary Results and Problems ... 157

12 Moment and Exponential Inequalities for Self-Normalized
 Processes .. 161
 12.1 Inequalities of Caballero, Fernandez and Nualart, Graversen
 and Peskir, and Kikuchi .. 161
 12.2 Moment Bounds via the Method of Mixtures 164
 12.2.1 Gaussian Mixing Densities .. 165
 12.2.2 The Mixing Density Functions in Sect. 11.2 167
 12.3 Applications and Examples .. 174
 12.3.1 Proof of Lemma 8.11 .. 174
 12.3.2 Generalizations of Theorems 12.1, 12.2 and 12.3 175
12.3.3 Moment Inequalities Under Canonical Assumption for a Restricted Range 176
12.4 Supplementary Results and Problems .. 177

13 Laws of the Iterated Logarithm for Self-Normalized Processes 179
13.1 Stout’s LIL for Self-Normalized Martingales 179
13.2 A Universal Upper LIL ... 182
13.3 Compact LIL for Self-Normalized Martingales 186
13.4 Supplementary Results and Problems 190

14 Multivariate Self-Normalized Processes with Matrix Normalization 193
14.1 Multivariate Extension of Canonical Assumptions 193
14.1.1 Matrix Sequence Roots for Self-Normalization 193
14.1.2 Canonical Assumptions for Matrix-Normalized Processes .. 194
14.2 Moment and Exponential Inequalities via Pseudo-Maximization .. 196
14.3 LIL and Boundary Crossing Probabilities for Multivariate
Self-Normalized Processes .. 201
14.4 Supplementary Results and Problems 202

Part III Statistical Applications

15 The \(t \)-Statistic and Studentized Statistics 207
15.1 Distribution Theory of Student’s \(t \)-Statistics 207
15.1.1 Case of Infinite Second Moment 208
15.1.2 Saddlepoint Approximations 210
15.1.3 The \(t \)-Test and a Sequential Extension 212
15.2 Multivariate Extension and Hotelling’s \(T^2 \)-Statistic 213
15.2.1 Sample Covariance Matrix and Wishart Distribution 213
15.2.2 The Multivariate \(t \)-Distribution and Hotelling’s
\(T^2 \)-Statistic .. 213
15.2.3 Asymptotic Theory in the Case of Non-Normal \(Y_t \) 215
15.3 General Studentized Statistics .. 216
15.3.1 Martingale Central Limit Theorems and Asymptotic
Normality ... 216
15.3.2 Non-Normal Limiting Distributions in Unit-Root
Nonstationary Autoregressive Models 217
15.3.3 Studentized Statistics in Stochastic Regression Models .. 218
15.4 Supplementary Results and Problems 221

16 Self-Normalization for Approximate Pivots in Bootstrapping 223
16.1 Approximate Pivots and Bootstrap-\(t \) Confidence Intervals 223
16.2 Edgeworth Expansions and Second-Order Accuracy 224
16.2.1 Edgeworth Expansions for Smooth Functions
of Sample Means ... 224
16.2.2 Edgeworth and Cornish–Fisher Expansions: Applications
to Bootstrap-\(t \) and Percentile Intervals 225
16.3 Asymptotic U-Statistics and Their Bootstrap Distributions 228
16.4 Application of Cramér-Type Moderate Deviations 232
16.5 Supplementary Results and Problems 233

17 Pseudo-Maximization in Likelihood and Bayesian Inference 235
17.1 Generalized Likelihood Ratio Statistics 235
17.1.1 The Wilks and Wald Statistics 236
17.1.2 Score Statistics and Their Martingale Properties 238
17.2 Penalized Likelihood and Bayesian Inference 238
17.2.1 Schwarz’s Bayesian Selection Criterion 239
17.2.2 Pseudo-Maximization and Frequentist Properties of Bayes Procedures ... 240
17.3 Supplementary Results and Problems 241

18 Sequential Analysis and Boundary Crossing Probabilities for Self-Normalized Statistics .. 243
18.1 Information Bounds and Asymptotic Optimality of Sequential GLR Tests ... 244
18.1.1 Likelihood Ratio Identities, the Wald-Hoeffding Lower Bounds and their Asymptotic Generalizations 244
18.1.2 Asymptotic Optimality of 2-SPRTs and Sequential GLR Tests ... 247
18.2 Asymptotic Approximations via Method of Mixtures and Geometric Integration ... 251
18.2.1 Boundary Crossing Probabilities for GLR Statistics via Method of Mixtures .. 251
18.2.2 A More General Approach Using Saddlepoint Approximations and Geometric Integration 252
18.2.3 Applications and Examples ... 257
18.3 Efficient Monte Carlo Evaluation of Boundary Crossing Probabilities ... 260
18.4 Supplementary Results and Problems 262

References ... 267

Index .. 273