Advanced Digital Signal Processing and Noise Reduction

Fourth Edition

Professor Saeed V. Vaseghi
Professor of Communications and Signal Processing
Department of Electronics & Computer Engineering
Brunel University, London, UK
Contents

Preface xix
Acknowledgements xxiii
Symbols xxv
Abbreviations xxix

1 Introduction 1
1.1 Signals, Noise and Information 1
1.2 Signal Processing Methods 3
 1.2.1 Transform-Based Signal Processing 3
 1.2.2 Source-Filter Model-Based Signal Processing 5
 1.2.3 Bayesian Statistical Model-Based Signal Processing 5
 1.2.4 Neural Networks 6
1.3 Applications of Digital Signal Processing 6
 1.3.1 Digital Watermarking 6
 1.3.2 Bio-medical, MIMO, Signal Processing 8
 1.3.3 Echo Cancellation 10
 1.3.4 Adaptive Noise Cancellation 12
 1.3.5 Adaptive Noise Reduction 12
 1.3.6 Blind Channel Equalisation 13
 1.3.7 Signal Classification and Pattern Recognition 13
 1.3.8 Linear Prediction Modelling of Speech 15
 1.3.9 Digital Coding of Audio Signals 16
 1.3.10 Detection of Signals in Noise 17
 1.3.11 Directional Reception of Waves: Beam-forming 18
 1.3.12 Space-Time Signal Processing 20
 1.3.13 Dolby Noise Reduction 20
 1.3.14 Radar Signal Processing: Doppler Frequency Shift 21
1.4 A Review of Sampling and Quantisation 22
 1.4.1 Advantages of Digital Format 24
 1.4.2 Digital Signals Stored and Transmitted in Analogue Format 25
 1.4.3 The Effect of Digitisation on Signal Bandwidth 25
 1.4.4 Sampling a Continuous-Time Signal 25
 1.4.5 Aliasing Distortion 27
 1.4.6 Nyquist Sampling Theorem 27
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.7 Quantisation</td>
<td>28</td>
</tr>
<tr>
<td>1.4.8 Non-Linear Quantisation, Companding</td>
<td>30</td>
</tr>
<tr>
<td>1.5 Summary</td>
<td>32</td>
</tr>
<tr>
<td>Bibliography</td>
<td>32</td>
</tr>
<tr>
<td>2 Noise and Distortion</td>
<td>35</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>35</td>
</tr>
<tr>
<td>2.1.1 Different Classes of Noise Sources and Distortions</td>
<td>36</td>
</tr>
<tr>
<td>2.1.2 Different Classes and Spectral/Temporal Shapes of Noise</td>
<td>37</td>
</tr>
<tr>
<td>2.2 White Noise</td>
<td>37</td>
</tr>
<tr>
<td>2.2.1 Band-Limited White Noise</td>
<td>38</td>
</tr>
<tr>
<td>2.3 Coloured Noise; Pink Noise and Brown Noise</td>
<td>39</td>
</tr>
<tr>
<td>2.4 Impulsive and Click Noise</td>
<td>39</td>
</tr>
<tr>
<td>2.5 Transient Noise Pulses</td>
<td>41</td>
</tr>
<tr>
<td>2.6 Thermal Noise</td>
<td>41</td>
</tr>
<tr>
<td>2.7 Shot Noise</td>
<td>42</td>
</tr>
<tr>
<td>2.8 Flicker (I/f) Noise</td>
<td>43</td>
</tr>
<tr>
<td>2.9 Burst Noise</td>
<td>44</td>
</tr>
<tr>
<td>2.10 Electromagnetic (Radio) Noise</td>
<td>45</td>
</tr>
<tr>
<td>2.10.1 Natural Sources of Radiation of Electromagnetic Noise</td>
<td>45</td>
</tr>
<tr>
<td>2.10.2 Man-made Sources of Radiation of Electromagnetic Noise</td>
<td>45</td>
</tr>
<tr>
<td>2.11 Channel Distortions</td>
<td>46</td>
</tr>
<tr>
<td>2.12 Echo and Multi-path Reflections</td>
<td>47</td>
</tr>
<tr>
<td>2.13 Modelling Noise</td>
<td>47</td>
</tr>
<tr>
<td>2.13.1 Frequency Analysis and Characterisation of Noise</td>
<td>47</td>
</tr>
<tr>
<td>2.13.2 Additive White Gaussian Noise Model (AWGN)</td>
<td>48</td>
</tr>
<tr>
<td>2.13.3 Hidden Markov Model and Gaussian Mixture Models for Noise</td>
<td>49</td>
</tr>
<tr>
<td>Bibliography</td>
<td>50</td>
</tr>
<tr>
<td>3 Information Theory and Probability Models</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Introduction: Probability and Information Models</td>
<td>52</td>
</tr>
<tr>
<td>3.2 Random Processes</td>
<td>53</td>
</tr>
<tr>
<td>3.2.1 Information-bearing Random Signals vs Deterministic Signals</td>
<td>53</td>
</tr>
<tr>
<td>3.2.2 Pseudo-Random Number Generators (PRNG)</td>
<td>55</td>
</tr>
<tr>
<td>3.2.3 Stochastic and Random Processes</td>
<td>56</td>
</tr>
<tr>
<td>3.2.4 The Space of Variations of a Random Process</td>
<td>56</td>
</tr>
<tr>
<td>3.3 Probability Models of Random Signals</td>
<td>57</td>
</tr>
<tr>
<td>3.3.1 Probability as a Numerical Mapping of Belief</td>
<td>57</td>
</tr>
<tr>
<td>3.3.2 The Choice of One and Zero as the Limits of Probability</td>
<td>57</td>
</tr>
<tr>
<td>3.3.3 Discrete, Continuous and Finite-State Probability Models</td>
<td>58</td>
</tr>
<tr>
<td>3.3.4 Random Variables and Random Processes</td>
<td>58</td>
</tr>
<tr>
<td>3.3.5 Probability and Random Variables – The Space and Subspaces of a</td>
<td>58</td>
</tr>
<tr>
<td>Variable</td>
<td>58</td>
</tr>
<tr>
<td>3.3.6 Probability Mass Function – Discrete Random Variables</td>
<td>60</td>
</tr>
<tr>
<td>3.3.7 Bayes' Rule</td>
<td>60</td>
</tr>
<tr>
<td>3.3.8 Probability Density Function – Continuous Random Variables</td>
<td>61</td>
</tr>
<tr>
<td>3.3.9 Probability Density Functions of Continuous Random Processes</td>
<td>62</td>
</tr>
<tr>
<td>3.3.10 Histograms – Models of Probability</td>
<td>63</td>
</tr>
<tr>
<td>3.4 Information Models</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1 Entropy: A Measure of Information and Uncertainty</td>
<td>65</td>
</tr>
<tr>
<td>3.4.2 Mutual Information</td>
<td>68</td>
</tr>
</tbody>
</table>
Contents

3.4.3 Entropy Coding – Variable Length Codes 69
3.4.4 Huffman Coding 70

3.5 Stationary and Non-Stationary Random Processes 73
3.5.1 Strict-Sense Stationary Processes 75
3.5.2 Wide-Sense Stationary Processes 75
3.5.3 Non-Stationary Processes 76

3.6 Statistics (Expected Values) of a Random Process 76
3.6.1 Central Moments 77
3.6.1.1 Cumulants 77
3.6.2 The Mean (or Average) Value 77
3.6.3 Correlation, Similarity and Dependency 78
3.6.4 Autocovariance 81
3.6.5 Power Spectral Density 81
3.6.6 Joint Statistical Averages of Two Random Processes 83
3.6.7 Cross-Correlation and Cross-Covariance 83
3.6.8 Cross-Power Spectral Density and Coherence 84
3.6.9 Ergodic Processes and Time-Averaged Statistics 85
3.6.10 Mean-Ergodic Processes 85
3.6.11 Correlation-Ergodic Processes 86

3.7 Some Useful Practical Classes of Random Processes 87
3.7.1 Gaussian (Normal) Process 87
3.7.2 Multivariate Gaussian Process 88
3.7.3 Gaussian Mixture Process 89
3.7.4 Binary-State Gaussian Process 90
3.7.5 Poisson Process – Counting Process 91
3.7.6 Shot Noise 92
3.7.7 Poisson–Gaussian Model for Clutters and Impulsive Noise 93
3.7.8 Markov Processes 94
3.7.9 Markov Chain Processes 95
3.7.10 Homogeneous and Inhomogeneous Markov Chains 96
3.7.11 Gamma Probability Distribution 96
3.7.12 Rayleigh Probability Distribution 97
3.7.13 Chi Distribution 97
3.7.14 Laplacian Probability Distribution 98

3.8 Transformation of a Random Process 98
3.8.1 Monotonic Transformation of Random Processes 99
3.8.2 Many-to-One Mapping of Random Signals 101

3.9 Search Engines: Citation Ranking 103
3.9.1 Citation Ranking in Web Page Rank Calculation 104

3.10 Summary 104

Bibliography 105

4 Bayesian Inference 107
4.1 Bayesian Estimation Theory: Basic Definitions 108
4.1.1 Bayes’ Theorem 109
4.1.2 Elements of Bayesian Inference 109
4.1.3 Dynamic and Probability Models in Estimation 110
4.1.4 Parameter Space and Signal Space 111
4.1.5 Parameter Estimation and Signal Restoration 111
4.1.6 Performance Measures and Desirable Properties of Estimators 112
4.1.7 Prior and Posterior Spaces and Distributions 114
Contents

4.2 Bayesian Estimation 117
 4.2.1 Maximum A Posteriori Estimation 117
 4.2.2 Maximum-Likelihood (ML) Estimation 118
 4.2.3 Minimum Mean Square Error Estimation 121
 4.2.4 Minimum Mean Absolute Value of Error Estimation 122
 4.2.5 Equivalence of the MAP, ML, MMSE and MAVE Estimates for Gaussian Processes with Uniform Distributed Parameters 123
 4.2.6 Influence of the Prior on Estimation Bias and Variance 123
 4.2.7 Relative Importance of the Prior and the Observation 126

4.3 Expectation-Maximisation (EM) Method 128
 4.3.1 Complete and Incomplete Data 128
 4.3.2 Maximisation of Expectation of the Likelihood Function 129
 4.3.3 Derivation and Convergence of the EM Algorithm 130

4.4 Cramer-Rao Bound on the Minimum Estimator Variance 131
 4.4.1 Cramer-Rao Bound for Random Parameters 133
 4.4.2 Cramer-Rao Bound for a Vector Parameter 133

4.5 Design of Gaussian Mixture Models (GMMs) 134
 4.5.1 EM Estimation of Gaussian Mixture Model 134

4.6 Bayesian Classification 136
 4.6.1 Binary Classification 137
 4.6.2 Classification Error 139
 4.6.3 Bayesian Classification of Discrete-Valued Parameters 139
 4.6.4 Maximum A Posteriori Classification 140
 4.6.5 Maximum-Likelihood Classification 140
 4.6.6 Minimum Mean Square Error Classification 140
 4.6.7 Bayesian Classification of Finite State Processes 141
 4.6.8 Bayesian Estimation of the Most Likely State Sequence 142

4.7 Modelling the Space of a Random Process 143
 4.7.1 Vector Quantisation of a Random Process 143
 4.7.2 Vector Quantisation using Gaussian Models of Clusters 143
 4.7.3 Design of a Vector Quantiser: K-Means Clustering 144

4.8 Summary 145

Bibliography 146

5 Hidden Markov Models 147
 5.1 Statistical Models for Non-Stationary Processes 147
 5.2 Hidden Markov Models 149
 5.2.1 Comparison of Markov and Hidden Markov Models 149
 5.2.1.1 Observable-State Markov Process 149
 5.2.1.2 Hidden-State Markov Process 149
 5.2.2 A Physical Interpretation: HMMs of Speech 151
 5.2.3 Hidden Markov Model as a Bayesian Model 152
 5.2.4 Parameters of a Hidden Markov Model 152
 5.2.5 State Observation Probability Models 153
 5.2.6 State Transition Probabilities 154
 5.2.7 State-Time Trellis Diagram 154
 5.3 Training Hidden Markov Models 155
 5.3.1 Forward–Backward Probability Computation 156
 5.3.2 Baum–Welch Model Re-estimation 157
 5.3.3 Training HMMs with Discrete Density Observation Models 158
8 Linear Prediction Models

8.1 Linear Prediction Coding

8.1.1 Predictability, Information and Bandwidth

8.1.2 Applications of LP Model in Speech Processing

8.1.3 Time-Domain Description of LP Models

8.1.4 Frequency Response of LP Model and Its Poles

8.1.5 Calculation of Linear Predictor Coefficients

8.1.6 Effect of Estimation of Correlation Function on LP Model Solution

8.1.7 The Inverse Filter: Spectral Whitening, De-correlation

8.1.8 The Prediction Error Signal

8.2 Forward, Backward and Lattice Predictors

8.2.1 Augmented Equations for Forward and Backward Predictors

8.2.2 Levinson–Durbin Recursive Solution

8.2.3 Lattice Predictors

8.2.4 Alternative Formulations of Least Square Error Prediction

8.2.5 Simultaneous Minimisation of the Backward and Forward Prediction Errors

8.2.6 Predictor Model Order Selection

8.3 Short-Term and Long-Term Predictors

8.4 MAP Estimation of Predictor Coefficients

8.4.1 Probability Density Function of Predictor Output

8.4.2 Using the Prior pdf of the Predictor Coefficients

8.5 Formant-Tracking LP Models

8.6 Sub-Band Linear Prediction Model

8.7 Signal Restoration Using Linear Prediction Models

8.7.1 Frequency-Domain Signal Restoration Using Prediction Models

8.7.2 Implementation of Sub-Band Linear Prediction Wiener Filters

8.8 Summary

Bibliography

9 Eigenvalue Analysis and Principal Component Analysis

9.1 Introduction – Linear Systems and Eigen Analysis

9.1.1 A Geometric Interpretation of Eigenvalues and Eigenvectors

9.2 Eigen Vectors and Eigenvalues

9.2.1 Matrix Spectral Theorem

9.2.2 Computation of Eigenvalues and Eigen Vectors

Bibliography
9.3 Principal Component Analysis (PCA)
 9.3.1 Computation of PCA 264
 9.3.2 PCA Analysis of Images: Eigen-Image Representation 265
 9.3.3 PCA Analysis of Speech in White Noise 266
9.4 Summary 269
Bibliography 270

10 Power Spectrum Analysis 271
10.1 Power Spectrum and Correlation 271
10.2 Fourier Series: Representation of Periodic Signals
 10.2.1 The Properties of Fourier's Sinusoidal Basis Functions 272
 10.2.2 The Basis Functions of Fourier Series 273
 10.2.3 Fourier Series Coefficients 274
10.3 Fourier Transform: Representation of Non-periodic Signals
 10.3.1 Discrete Fourier Transform 274
 10.3.2 Frequency-Time Resolutions: The Uncertainty Principle 277
 10.3.3 Energy-Spectral Density and Power-Spectral Density 278
10.4 Non-Parametric Power Spectrum Estimation 279
 10.4.1 The Mean and Variance of Periodograms 279
 10.4.2 Averaging Periodograms (Bartlett Method) 280
 10.4.3 Welch Method: Averaging Periodograms from Overlapped and Windowed
 Segments 280
 10.4.4 Blackman–Tukey Method 282
 10.4.5 Power Spectrum Estimation from Autocorrelation of Overlapped
 Segments 282
10.5 Model-Based Power Spectrum Estimation 283
 10.5.1 Maximum-Entropy Spectral Estimation 283
 10.5.2 Autoregressive Power Spectrum Estimation 285
 10.5.3 Moving-Average Power Spectrum Estimation 286
 10.5.4 Autoregressive Moving-Average Power Spectrum Estimation 286
10.6 High-Resolution Spectral Estimation Based on Subspace Eigen-Analysis 287
 10.6.1 Pisarenko Harmonic Decomposition 287
 10.6.2 Multiple Signal Classification (MUSIC) Spectral Estimation 289
 10.6.3 Estimation of Signal Parameters via Rotational Invariance
 Techniques (ESPRIT) 291
10.7 Summary 293
Bibliography 293

11 Interpolation – Replacement of Lost Samples 295
11.1 Introduction 295
 11.1.1 Ideal Interpolation of a Sampled Signal 296
 11.1.2 Digital Interpolation by a Factor of I 297
 11.1.3 Interpolation of a Sequence of Lost Samples 299
 11.1.4 The Factors That Affect Interpolation Accuracy 300
11.2 Polynomial Interpolation 301
 11.2.1 Lagrange Polynomial Interpolation 302
 11.2.2 Newton Polynomial Interpolation 303
 11.2.3 Hermite Polynomial Interpolation 304
 11.2.4 Cubic Spline Interpolation 305
11.3 Model-Based Interpolation 306
 11.3.1 Maximum A Posteriori Interpolation 307
13.7 Robust Parameter Estimation 355
13.8 Restoration of Archived Gramophone Records 357
13.9 Summary 358
Bibliography 358

14 Transient Noise Pulses 359
14.1 Transient Noise Waveforms 359
14.2 Transient Noise Pulse Models 361
14.2.1 Noise Pulse Templates 361
14.2.2 Autoregressive Model of Transient Noise Pulses 362
14.2.3 Hidden Markov Model of a Noise Pulse Process 363
14.3 Detection of Noise Pulses 364
14.3.1 Matched Filter for Noise Pulse Detection 364
14.3.2 Noise Detection Based on Inverse Filtering 365
14.3.3 Noise Detection Based on HMM 365
14.4 Removal of Noise Pulse Distortions 366
14.4.1 Adaptive Subtraction of Noise Pulses 366
14.4.2 AR-based Restoration of Signals Distorted by Noise Pulses 367
14.5 Summary 369
Bibliography 369

15 Echo Cancellation 371
15.1 Introduction: Acoustic and Hybrid Echo 371
15.2 Echo Return Time: The Sources of Delay in Communication Networks 373
15.2.1 Transmission link (electromagnetic wave propagation) delay 374
15.2.2 Speech coding/decoding delay 374
15.2.3 Network processing delay 374
15.2.4 De-Jitter delay 375
15.2.5 Acoustic echo delay 375
15.3 Telephone Line Hybrid Echo 375
15.3.1 Echo Return Loss 376
15.4 Hybrid (Telephone Line) Echo Suppression 377
15.5 Adaptive Echo Cancellation 377
15.5.1 Echo Canceller Adaptation Methods 379
15.5.2 Convergence of Line Echo Canceller 380
15.5.3 Echo Cancellation for Digital Data Transmission 380
15.6 Acoustic Echo 381
15.7 Sub-Band Acoustic Echo Cancellation 384
15.8 Echo Cancellation with Linear Prediction Pre-whitening 385
15.9 Multi-Input Multi-Output Echo Cancellation 386
15.9.1 Stereophonic Echo Cancellation Systems 386
15.9.2 Non-uniqueness Problem in MIMO Echo Channel Identification 387
15.9.3 MIMO In-Cabin Communication Systems 388
15.10 Summary 389
Bibliography 389

16 Channel Equalisation and Blind Deconvolution 391
16.1 Introduction 391
16.1.1 The Ideal Inverse Channel Filter 392
16.1.2 Equalisation Error, Convolutional Noise 393
16.1.3 Blind Equalisation 394
16.1.4 Minimum- and Maximum-Phase Channels 396
16.1.5 Wiener Equaliser 396
16.2 Blind Equalisation Using Channel Input Power Spectrum 398
 16.2.1 Homomorphic Equalisation 398
 16.2.2 Homomorphic Equalisation Using a Bank of High-Pass Filters 400
16.3 Equalisation Based on Linear Prediction Models 400
 16.3.1 Blind Equalisation Through Model Factorisation 401
16.4 Bayesian Blind Deconvolution and Equalisation 402
 16.4.1 Conditional Mean Channel Estimation 403
 16.4.2 Maximum-Likelihood Channel Estimation 403
 16.4.3 Maximum A Posteriori Channel Estimation 404
 16.4.4 Channel Equalisation Based on Hidden Markov Models 404
 16.4.5 MAP Channel Estimate Based on HMMs 406
 16.4.6 Implementations of HMM-Based Deconvolution 407
16.5 Blind Equalisation for Digital Communication Channels 409
 16.5.1 LMS Blind Equalisation 410
 16.5.2 Equalisation of a Binary Digital Channel 413
16.6 Equalisation Based on Higher-Order Statistics 414
 16.6.1 Higher-Order Moments, Cumulants and Spectra 414
 16.6.1.1 Cumulants 415
 16.6.1.2 Higher-Order Spectra 416
 16.6.2 Higher-Order Spectra of Linear Time-Invariant Systems 416
 16.6.3 Blind Equalisation Based on Higher-Order Cepstra 417
 16.6.3.1 Bi-Cepstrum 418
 16.6.3.2 Tri-Cepstrum 419
 16.6.3.3 Calculation of Equaliser Coefficients from the Tri-cepsrum 420
16.7 Summary 420
Bibliography 421

17 Speech Enhancement: Noise Reduction, Bandwidth Extension and Packet Replacement 423
17.1 An Overview of Speech Enhancement in Noise 424
17.2 Single-Input Speech Enhancement Methods 425
 17.2.1 Elements of Single-Input Speech Enhancement 425
 17.2.1.1 Segmentation and Windowing of Speech Signals 426
 17.2.1.2 Spectral Representation of Speech and Noise 426
 17.2.1.3 Linear Prediction Model Representation of Speech and Noise 426
 17.2.1.4 Inter-Frame and Intra-Frame Correlations 427
 17.2.1.5 Speech Estimation Module 427
 17.2.1.6 Probability Models of Speech and Noise 427
 17.2.1.7 Cost of Error Functions in Speech Estimation 428
 17.2.2 Wiener Filter for De-noising Speech 428
 17.2.2.1 Wiener Filter Based on Linear Prediction Models 429
 17.2.2.2 HMM-Based Wiener Filters 429
 17.2.3 Spectral Subtraction of Noise 430
 17.2.3.1 Spectral Subtraction Using LP Model Frequency Response 431
 17.2.4 Bayesian MMSE Speech Enhancement 432
 17.2.5 Kalman Filter for Speech Enhancement 432
 17.2.5.1 Kalman State-Space Equations of Signal and Noise Models 433
17.2.6 **Speech Enhancement Using LP-HNM Model**

17.2.6.1 Overview of LP-HNM Enhancement System 435
17.2.6.2 Formant Estimation from Noisy Speech 436
17.2.6.3 Initial-Cleaning of Noisy Speech 437
17.2.6.4 Formant Tracking 437
17.2.6.5 Harmonic Plus Noise Model (HNM) of Speech Excitation 438
17.2.6.6 Fundamental Frequency Estimation 439
17.2.6.7 Estimation of Amplitudes Harmonics of HNM 440
17.2.6.8 Estimation of Noise Component of HNM 440
17.2.6.9 Kalman Smoothing of Trajectories of Formants and Harmonics 441

17.3 **Speech Bandwidth Extension–Spectral Extrapolation**

17.3.1 LP-HNM Model of Speech 442
17.3.2 Extrapolation of Spectral Envelope of LP Model 443
17.3.2.1 Phase Estimation 445
17.3.2.2 Codebook Mapping of the Gain 446
17.3.3 Extrapolation of Spectrum of Excitation of LP Model 447
17.3.3.1 Sensitivity to Pitch 447

17.4 **Interpolation of Lost Speech Segments–Packet Loss Concealment**

17.4.1 Phase Prediction 450
17.4.2 Codebook Mapping 452
17.4.2.1 Evaluation of LP-HNM Interpolation 453

17.5 **Multi-Input Speech Enhancement Methods**

17.5.1 **Beam-forming with Microphone Arrays** 455
17.5.1.1 Spatial Configuration of Array and The Direction of Reception 458
17.5.1.2 Directional of Arrival (DoA) and Time of Arrival (ToA) 459
17.5.1.3 Steering the Array Direction: Equalisation of the ToAs at the Sensors 459
17.5.1.4 The Frequency Response of a Delay-Sum Beamformer 460

17.6 **Speech Distortion Measurements**

17.6.1 **Signal-to-Noise Ratio – SNR** 462
17.6.2 **Segmental Signal to Noise Ratio – SNR_{seg}** 462
17.6.3 **Itakura-Saito Distance – ISD** 463
17.6.4 **Harmonicity Distance – HD** 463
17.6.5 **Diagnostic Rhyme Test – DRT** 463
17.6.6 **Mean Opinion Score – MOS** 464
17.6.7 **Perceptual Evaluation of Speech Quality – PESQ** 464

18 **Multiple-Input Multiple-Output Systems, Independent Component Analysis**

18.1 **Introduction** 467
18.2 A note on comparison of beam-forming arrays and ICA 469
18.3 **MIMO Signal Propagation and Mixing Models**
18.3.1 **Instantaneous Mixing Models** 469
18.3.2 **Anechoic, Delay and Attenuation, Mixing Models** 470
18.3.3 **Convolutional Mixing Models** 471
18.4 **Independent Component Analysis**
18.4.1 A Note on Orthogonal, Orthonormal and Independent 473
18.4.2 Statement of ICA Problem 474
18.4.3 Basic Assumptions in Independent Component Analysis 475
18.4.4 The Limitations of Independent Component Analysis 475
18.4.5 Why a mixture of two Gaussian signals cannot be separated? 476
18.4.6 The Difference Between Independent and Uncorrelated 476
18.4.7 Independence Measures; Entropy and Mutual Information 477
 18.4.7.1 Differential Entropy 477
 18.4.7.2 Maximum Value of Differential Entropy 477
 18.4.7.3 Mutual Information 478
 18.4.7.4 The Effect of a Linear Transformation on Mutual Information 479
 18.4.7.5 Non-Gaussianity as a Measure of Independence 480
 18.4.7.6 Negentropy: A measure of Non-Gaussianity and Independence 480
18.4.7.7 Fourth Order Moments – Kurtosis 481
 18.4.7.8 Kurtosis-based Contrast Functions – Approximations to
 Entropic Contrast 481
18.4.8 Super-Gaussian and Sub-Gaussian Distributions 482
18.4.9 Fast-ICA Methods 482
 18.4.9.1 Gradient search optimisation method 483
 18.4.9.2 Newton optimisation method 483
18.4.10 Fixed-point Fast ICA 483
18.4.11 Contrast Functions and Influence Functions 484
18.4.12 ICA Based on Kurtosis Maximization – Projection Pursuit Gradient Ascent 485
18.4.13 Jade Algorithm – Iterative Diagonalisation of Cumulant Matrices 487
18.5 Summary 490
Bibliography 490

19 Signal Processing in Mobile Communication 491
19.1 Introduction to Cellular Communication 491
 19.1.1 A Brief History of Radio Communication 492
 19.1.2 Cellular Mobile Phone Concept 493
 19.1.3 Outline of a Cellular Communication System 494
19.2 Communication Signal Processing in Mobile Systems 497
19.3 Capacity, Noise, and Spectral Efficiency 498
 19.3.1 Spectral Efficiency in Mobile Communication Systems 500
19.4 Multi-path and Fading in Mobile Communication 500
 19.4.1 Multi-path Propagation of Electromagnetic Signals 501
 19.4.2 Rake Receivers for Multi-path Signals 502
 19.4.3 Signal Fading in Mobile Communication Systems 502
 19.4.4 Large-Scale Signal Fading 504
 19.4.5 Small-Scale Fast Signal Fading 504
19.5 Smart Antennas – Space–Time Signal Processing 505
 19.5.1 Switched and Adaptive Smart Antennas 506
 19.5.2 Space–Time Signal Processing – Diversity Schemes 506
19.6 Summary 508
Bibliography 508

Index 509