Alexander Soifer

The Mathematical Coloring Book

Mathematics of Coloring and the Colorful Life of its Creators

Forewords by Branko Grünbaum, Peter D. Johnson Jr., and Cecil Rousseau

Springer
Contents

Foreword by Branko Grünbaum ... ix
Foreword by Peter D. Johnson ... xi
Foreword by Cecil Rousseau .. xiii
Acknowledgments .. xv
Greetings to the Reader ... xxvi

Part I Merry-Go-Round ... 1

1 A Story of Colored Polygons and Arithmetic Progressions 3
 1.1 The Story of Creation .. 3
 1.2 The Problem of Colored Polygons 4
 1.3 Translation into the Tongue of APs 6
 1.4 Prehistory .. 7
 1.5 Completing the Go-Round .. 8

Part II Colored Plane ... 11

2 Chromatic Number of the Plane: The Problem 13

3 Chromatic Number of the Plane:
 An Historical Essay ... 21

4 Polychromatic Number of the Plane and Results Near the Lower
 Bound ... 32

5 De Bruijn–Erdős Reduction to Finite Sets and Results Near the
 Lower Bound ... 39
Contents

Part I Polychromatic Number of the Plane and Results Near the Upper Bound

6 Polychromatic Number of the Plane and Results Near the Upper Bound .. 43

6.1 Stechkin's 6-Coloring .. 43

6.2 Best 6-Coloring of the Plane 44

6.3 The Age of Tiling .. 47

Part II Continuum of 6-Colorings of the Plane

7 Continuum of 6-Colorings of the Plane 50

Part III Chromatic Number of the Plane in Special Circumstances

8 Chromatic Number of the Plane in Special Circumstances 57

Part IV Measurable Chromatic Number of the Plane

9 Measurable Chromatic Number of the Plane 60

9.1 Definitions ... 60

9.2 Lower Bound for Measurable Chromatic Number of the Plane 60

9.3 Kenneth J. Falconer ... 65

Part V Coloring in Space

10 Coloring in Space .. 67

Part VI Rational Coloring

11 Rational Coloring .. 72

Part III Coloring Graphs

12 Chromatic Number of a Graph 79

12.1 The Basics ... 79

12.2 Chromatic Number and Girth 82

12.3 Wormald's Application ... 86

13 Dimension of a Graph .. 88

13.1 Dimension of a Graph .. 88

13.2 Euclidean Dimension of a Graph 93

Part IV Embedding 4-Chromatic Graphs in the Plane

14 Embedding 4-Chromatic Graphs in the Plane 99

14.1 A Brief Overture .. 99

14.2 Attaching a 3-Cycle to Foundation Points in 3 Balls 101

14.3 Attaching a k-Cycle to a Foundation Set of Type $(a_1, a_2, a_3, 0)_8$ 102

14.4 Attaching a k-Cycle to a Foundation Set of Type $(a_1, a_2, a_3, 1)_5$ 104

14.5 Attaching a k-Cycle to Foundation Sets of Types $(a_1, a_2, 0, 0)_3$ and $(a_1, 0, a_3, 0)_3$ 104

14.6 Removing Coincidences .. 106

14.7 O'Donnell's Embeddings 107

14.8 Appendix ... 108

Part V Embedding World Records

15 Embedding World Records ... 110

15.1 A 56-Vertex, Girth 4, 4-Chromatic Unit Distance Graph 111

15.2 A 47-Vertex, Girth 4, 4-Chromatic, Unit Distance Graph 116

15.3 A 40-Vertex, Girth 4, 4-Chromatic, Unit Distance Graph 117
Contents

15.4 A 23-Vertex, Girth 4, 4-Chromatic, Unit Distance Graph 121
15.5 A 45-Vertex, Girth 5, 4-Chromatic, Unit Distance Graph 124

16 Edge Chromatic Number of a Graph 127
16.1 Vizing's Edge Chromatic Number Theorem 127
16.2 Total Insanity around the Total Chromatic Number Conjecture 135

17 Carsten Thomassen's 7-Color Theorem 140

Part IV Coloring Maps 145

18 How the Four-Color Conjecture Was Born 147
18.1 The Problem is Born 147
18.2 A Touch of Historiography 156
18.3 Creator of the 4CC, Francis Guthrie 158
18.4 The Brother 161

19 Victorian Comedy of Errors and Colorful Progress 163
19.1 Victorian Comedy of Errors 163
19.2 2-Colorable Maps 165
19.3 3-Colorable Maps 168
19.4 The New Life of the Three-Color Problem 173

20 Kempe-Heawood's Five-Color Theorem and Tait's Equivalence 176
20.1 Kempe's 1879 Attempted Proof 176
20.2 The Hole 180
20.3 The Counterexample 180
20.4 Kempe-Heawood's Five-Color Theorem 182
20.5 Tait's Equivalence 182
20.6 Frederick Guthrie's Three-Dimensional Generalization 185

21 The Four-Color Theorem 187

22 The Great Debate 195
22.1 Thirty Plus Years of Debate 195
22.2 Twenty Years Later, or Another Time – Another Proof 199
22.3 The Future that commenced 65 Years Ago: Hugo Hadwiger's Conjecture 205

23 How Does One Color Infinite Maps? A Bagatelle 207

24 Chromatic Number of the Plane Meets Map Coloring: Townsend-Woodall's 5-Color Theorem 209
24.1 On Stephen P. Townsend's 1979 Proof 209
24.2 Proof of Townsend-Woodall's 5-Color Theorem 211
Part V Colored Graphs .. 225

25 Paul Erdős .. 227
 25.1 The First Encounter 228
 25.2 Old Snapshots of the Young 230

26 De Bruijn–Erdős’s Theorem and Its History 236
 26.1 De Bruijn–Erdős’s Compactness Theorem 236
 26.2 Nicolaas Govert de Bruijn 239

27 Edge Colored Graphs: Ramsey and Folkman Numbers .. 242
 27.1 Ramsey Numbers 242
 27.2 Folkman Numbers 256

Part VI The Ramsey Principle 261

28 From Pigeonhole Principle to Ramsey Principle 263
 28.1 Infinite Pigeonhole and Infinite Ramsey Principles .. 263
 28.2 Pigeonhole and Finite Ramsey Principles 267

29 The Happy End Problem 268
 29.1 The Problem ... 268
 29.2 The Story Behind the Problem 272
 29.3 Progress on the Happy End Problem 277
 29.4 The Happy End Players Leave the Stage
 as Shakespearian Heroes 280

30 The Man behind the Theory: Frank Plumpton Ramsey .. 281
 30.1 Frank Plumpton Ramsey and the Origin of the Term “Ramsey
 Theory” .. 281
 30.2 Reflections on Ramsey and Economics, by Harold W. Kuhn .. 291

Part VII Colored Integers: Ramsey Theory Before Ramsey and Its
 AfterMath .. 297

31 Ramsey Theory Before Ramsey: Hilbert’s Theorem 299

32 Ramsey Theory Before Ramsey: Schur’s Coloring Solution of a
 Colored Problem and Its Generalizations 301
 32.1 Schur’s Masterpiece 301
 32.2 Generalized Schur 304
 32.3 Non-linear Regular Equations 307
38.2 New World or Old? ... 421
38.3 Defense .. 427
38.4 Van der Waerden and Van der Corput: Dialog in Letters 434
38.5 A Rebellion in Brouwer’s Amsterdam 446

39 In Search of Van der Waerden: The Unsettling Years, 1946–1951 .. 449
39.1 The Het Parool Affair .. 449
39.2 Job History 1945–1947 458
39.3 “America! America!” .. 462
39.4 Van der Waerden, Goudsmit and Heisenberg:
 A ‘Letteral Triangle’ .. 465
39.5 Professorship at Amsterdam 472
39.6 Escape to Neutrality ... 474
39.7 Epilogue: The Drama of Van der Waerden 480

Part VIII Colored Polygons: Euclidean Ramsey Theory 485

40 Monochromatic Polygons in a 2-Colored Plane 487

41 3-Colored Plane, 2-Colored Space, and Ramsey Sets 500

42 Gallai’s Theorem .. 505
42.1 Tibor Gallai and His Theorem 505
42.2 Double Induction ... 509
42.3 Proof of Gallai’s Theorem by Witt 509
42.4 Adriano Garsia ... 514
42.5 An Application of Gallai 516
42.6 Hales-Jewett’s Tic-Tac-Toe 517

Part IX Colored Integers in Service of Chromatic Number
of the Plane .. 519

43 Application of Baudet–Schur–Van der Waerden 521

44 Application of Bergelson–Leibman’s and Mordell–Faltings’
Theorems .. 525

45 Solution of an Erdős Problem: O’Donnell’s Theorem 529
45.1 O’Donnell’s Theorem ... 529
45.2 Paul O’Donnell .. 530

Part X Predicting the Future 533

46 What If We Had No Choice? 535