Gerd Habenicht

Applied Adhesive Bonding

A Practical Guide for Flawless Results

Translated by Christine Ahner

WILEY-VCH Verlag GmbH & Co. KGaA
Contents

Preface XI

1 Introduction 1
1.1 Bonding as a Joining Process 1
1.2 Advantages and Disadvantages of Bonding 1
1.3 Terms and Definitions 3

2 Structure and Classification of Adhesives 5
2.1 Structure of Adhesives 5
2.1.1 Carbon as Central Element 5
2.1.2 Monomer – Polymer 6
2.1.3 Polymer Formation 7
2.2 Classification of Adhesives 8
2.2.1 Adhesives Curing by Chemical Reaction (Reactive Adhesives) 8
2.2.2 Adhesives Curing without Chemical Reaction (Physically Setting Adhesives) 8
2.2.3 Solvent-Containing and Solvent-Free Adhesives 9
2.2.4 Adhesives on Natural and Synthetic Basis 10
2.2.5 Adhesives on Organic and Inorganic Basis 10
2.2.6 Application-Related Names of Adhesives 11

3 From Adhesive to Adhesive Layer 13
3.1 Reactive Adhesives – Fundamentals 13
3.1.1 Pot Life 14
3.1.2 Mixing Ratio of the Components 14
3.1.3 Impact of Time on Adhesive Curing 15
3.1.4 Impact of Temperature on Adhesive Curing 16
3.2 Two-Component and One-Component Reactive Adhesives 17
3.2.1 Two-Component Reactive Adhesives 18
3.2.2 One-Component Reactive Adhesives 18
3.3 Properties of Adhesive Layers 19
3.3.1 Thermoplastics 19
3.3.2 Thermoset Plastics 20
3.3.3 Elastomers 21
3.3.4 Glass Transition Temperature 21
3.3.5 Creep 22

4 Important Reactive Adhesives 23
4.1 Epoxy Resin Adhesives 23
4.1.1 Two Component Epoxy Resin Adhesives 23
4.1.2 One-Component Epoxy Resin Adhesives 25
4.1.3 Reactive Epoxy Resin Hot-Melt Adhesives 25
4.1.4 Properties and Application of Epoxy Resin Adhesives 26
4.2 Polyurethane (PUR) Adhesives 26
4.2.1 Two-Component Polyurethane Adhesives (Solvent-Free) 27
4.2.2 One-Component Polyurethane Adhesives (Solvent-Free) 27
4.2.3 Reactive Polyurethane Hot-Melt Adhesives (Solvent-Free) 29
4.2.4 One-Component Polyurethane Solvent-Based Adhesives 30
4.2.5 Two-Component Polyurethane Solvent-Based Adhesives 30
4.2.6 Polyurethane Dispersion Adhesives 30
4.3 Acrylic Adhesives 31
4.3.1 Cyanoacrylate Adhesives 33
4.3.2 Radiation-Curing Adhesives 34
4.3.3 Methacrylate Adhesives 35
4.3.4 Anaerobic Adhesives 37
4.4 Unsaturated Polyester Resins (UP-Resins) 39
4.5 Phenolic Adhesives 39
4.6 Silicones 40
4.7 Summary Reactive Adhesives 41
4.8 Film Adhesives 42
4.9 Sealing Materials 42
4.10 Polymer Mortars 43

5 Physically Setting Adhesives 45
5.1 Hot-Melt Adhesives 45
5.2 Solvent-Based Adhesives 47
5.3 Contact Adhesives 50
5.4 Dispersion Adhesives 51
5.5 Plastisols 53
5.6 Pressure-Sensitive Adhesives, Adhesive Tapes 53
5.7 Adhesive Strips 55
5.8 Glue Sticks 55
5.9 Adhesives Based on Natural Raw Materials 55
5.10 Adhesives on an Inorganic Basis 56
6 Adhesive Forces in Bonded Joints 57
 6.1 Adhesive Forces Between Adhesive Layer and Adherend (Adhesion) 57
 6.2 Wetting 59
 6.3 Surface Tension 60
 6.4 Adhesive Forces Inside an Adhesive Layer (Cohesion) 61

7 Production of Bonded Joints 63
 7.1 Surface Treatment 64
 7.1.1 Surface Preparation 64
 7.1.1.1 Cleaning 64
 7.1.1.2 Adjusting 64
 7.1.1.3 Degreasing 64
 7.1.1.4 Degreasing Agents 65
 7.1.2 Surface Pretreatment 66
 7.1.2.1 Mechanical Surface Pretreatment 67
 7.1.2.2 Physical and Chemical Surface Pretreatment 68
 7.1.2.3 Pickling 69
 7.1.2.4 Surface Layers and Creep Corrosion 69
 7.1.3 Surface Post-Treatment 70
 7.1.3.1 Primer 70
 7.1.3.2 Climatization 71
 7.2 Adhesive Processing 71
 7.2.1 Adhesive Preparation 71
 7.2.1.1 Viscosity Adjustment 71
 7.2.1.2 Homogenization 71
 7.2.1.3 Climatization 72
 7.2.2 Adhesive Mixing 72
 7.2.2.1 Industrial Processing 72
 7.2.2.2 Application in Workshops 72
 7.2.2.3 Dynamic Mixers 73
 7.2.2.4 Static Mixers 74
 7.2.3 Adhesive Application 75
 7.2.3.1 Application Methods 76
 7.2.3.2 Laminating 76
 7.2.3.3 Amount Applied 77
 7.2.4 Fixing of Adherends 78
 7.2.5 Adhesive Curing 79
 7.2.5.1 Drying, Evaporating 80
 7.2.5.2 Curing 80
 7.3 Repair Bonding 81
 7.3.1 Metal Components 81
 7.3.2 Plastics 83
 7.3.2.1 Rigid Materials 83
 7.3.2.2 PVC Films 84
7.3.2.3 Gummed Fiber Fabric 84
7.4 Mistake Possibilities in Bonding and Remedial Actions 85
7.5 Safety Measures in Adhesive Processing 88
7.5.1 Workplace Prerequisites for Adhesive Processing 88
7.5.2 Rules of Conduct in Adhesive Processing 89
7.6 Quality Assurance 90
7.7 Adhesive-Bonding Training 91

8 Adhesive Selection 93
8.1 Preliminary Notes 93
8.2 Determining Factors for the Selection of Adhesives 94
8.2.1 Adherend Properties 95
8.2.2 Demands on Bonded Joints 96
8.2.3 Preconditions in Manufacturing 96
8.2.4 Processing Parameters of Adhesives 97
8.2.5 Property-Related Parameters of Adhesives and Adhesive Layers 97
8.2.5.1 One-Component Reactive Adhesives 98
8.2.5.2 Two-Component Reactive Adhesives 99
8.2.5.3 Physically Setting Adhesives 99
8.3 Selection Criteria 101

9 Adhesive Properties of Important Materials 105
9.1 Metals 105
9.1.1 Fundamentals 105
9.1.1.1 Strength 105
9.1.1.2 Impermeability Towards Solvents 106
9.1.1.3 Insolubility in Solvents 106
9.1.1.4 Thermal Conductivity 106
9.1.1.5 Temperature Resistance 106
9.1.2 Surface Pretreatment 106
9.1.3 Bondability of Important Metals 107
9.1.3.1 Aluminum and Al-Alloys 107
9.1.3.2 Noble Metals 107
9.1.3.3 Stainless Steels 107
9.1.3.4 Copper 107
9.1.3.5 Brass 108
9.1.3.6 Steels, General Constructional Steels 108
9.1.3.7 Galvanized Steels, Zinc 108
9.1.4 Adhesives for Bonded Metal Joints 108
9.2 Plastics 109
9.2.1 Fundamentals 109
9.2.2 Classification of Plastics 110
9.2.3 Identification of Plastics 112
9.2.4 Surface Pretreatment 112
9.2.4.1 Corona Method 112