Thixoforming

Semi-solid Metal Processing

Edited by
Gerhard Hirt and Reiner Kopp
Contents

Preface XV
List of Contributors XVII

1 Semi-solid Forming of Aluminium and Steel – Introduction and Overview 1
Gerhard Hirt, Liudmila Khizhnyakova, René Baadjou, Frederik Knauf, and Reiner Kopp

1.1 Introduction 1
1.2 Early Work on Flow Behaviour and Technology Development 4
1.2.1 Basic Findings Concerning the Rheology of Metals in the Semi-solid Condition 4
1.2.2 First Steps Towards a Semi-solid Metal-forming Technology 6
1.3 Today’s Technologies of Semi-solid Metal Forming 7
1.3.1 Preparation of Billets for Semi-solid Forming 9
1.3.1.1 Direct Chill Casting 9
1.3.1.2 Thermomechanical Treatment 10
1.3.2 Reheating of Billets and Alternative Slurry Production 10
1.3.2.1 Heating Furnaces and Strategies 10
1.3.2.2 Control of the Billet Condition During and After Reheating 13
1.3.3 Alternative Routes for Slurry Preparation 14
1.3.3.1 The UBE New Rheocasting Process 14
1.3.3.2 The Cooling Slope Method 15
1.3.3.3 Low Superheat Casting 15
1.3.3.4 Single Slug Production Method (SSP Method) 15
1.3.3.5 The Continuous Rheoconversion Process (CRP) 15
1.3.3.6 The SEED Process 16
1.3.3.7 Low Superheat Pouring with a Shear Field (LSPSF) 16
1.3.3.8 The Gas Bubbles Technique 16
1.3.3.9 Method of Billet Production Directly Using Liquid Electrolysed Aluminium 16
1.3.4 Process Alternatives for Semi-solid Forming 17
1.3.5 Industrial Application Potential 18
1.3.5.1 AlSi7Mg (A356, A357) 18
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.5.2 Other Aluminium Alloys</td>
</tr>
<tr>
<td>1.3.5.3 High Melting Point Alloys (i.e. Steels)</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Part One Material Fundamentals of Metal Forming in the Semi-solid State | 29 |

2 Metallurgical Aspects of SSM Processing 31

Peter J. Uggowitzer and Dirk I. Uhlenhaut

2.1 Introduction 31
2.2 Temperature Sensitivity S^* and Solid-Liquid Fraction 32
2.3 Slurry Formation in the Rheo- and Thixo-routes 34
2.4 Proneness to Segregation and Hot Tearing 36
2.5 Impact of Variations in Alloy Composition 40
2.6 Conclusion 41
References 42

3 Material Aspects of Steel Thixoforming 43

Wolfgang Bleck, Sebastian Dziallach, Heike Meuser, Wolfgang Püttgen, and Peter J. Uggowitzer

3.1 Introduction 43
3.2 Background 44
3.2.1 Material Prerequisites for the Thixoforming of Steel 44
3.2.1.1 Rheological Behaviour of Thixotropic Metal Suspensions 45
3.2.1.2 The Sponge Effect 47
3.2.1.3 Temperature Interval Size and Temperature Sensitivity 48
3.2.1.4 Microstructure in the Partial Liquid State 51
3.2.2 Structural Examination 54
3.2.2.1 Structural Parameters 54
3.3 Alloying Systems 61
3.3.1 Tool Steel X210CrW12 62
3.3.2 Roller-Bearing Steel 100Cr6 64
3.4 Structural Parameter Development and Material Selection 67
3.4.1 Development of the Structural Parameters of Steel X210CrW12 67
3.4.1.1 Metallographic Analysis of Quenched Specimens from the Three-Phase Area 69
3.4.1.2 Metallographic Analysis of Quenched Specimens from the Two-Phase Area 71
3.4.1.3 Microprobe Examinations of the Quenched X210CrW12 Specimens 72
3.4.1.4 EBSD-Measurements of Quenched X210CrW12 Specimens 76
3.4.2 Determination of the Structural Parameters of Steel 100Cr6 77
3.4.2.1 Metallographic Analysis of Quenched Specimens of Steel 100Cr6 78
3.4.2.2 Microprobe Examination of the Quenched 100Cr6 Samples 79
3.4.2.3 EBSD Measurements of Quenched 100Cr6 Specimens 80
3.4.3 Concluding Assessment of the Microstructure Parameter Determination 81
3.5 Melting Behaviour 82
3.5.1 Thermodynamic Preliminary Considerations and Microstructural Examinations Concerning the Structural Regulation of Steel 100Cr6 by Means of TiN Particles 82
3.5.2 Concluding Appraisal of TiN Doping 86
3.6 Microstructure Analysis and Material Properties 86
3.6.1 Structural Changes and Properties of the Tool Steel X210CrW12 86
3.6.1.1 Thermodynamic Preliminary Considerations and Microstructural Examinations 87
3.6.1.2 Examinations Concerning Long-Term Heat Resistance 96
3.6.2 Structural Changes and the Properties of the Hypo-eutectic Steel 100Cr6 98
3.6.3 Final Evaluation of the Heat-treatment Strategies 98
3.7 Conclusions 100
References 101

4 Design of Al and Al–Li Alloys for Thixoforming 105

Bernd Friedrich, Alexander Arnold, Roger Sauermann, and Tony Noll

4.1 Production of Raw Material for Thixoforming Processes 105
4.2 Chemical Grain Refinement of Commercial Thixoalloys 108
4.2.1 Methodology for Tuning of Commercial Alloys for Semi-solid Processing by Means of Grain Refinement 108
4.2.2 Adaptation of the Chemical Composition 110
4.2.3 Influence on the Form Factor of the Primary Phase 111
4.2.4 Modification of the Eutectic Structure 113
4.2.5 Influencing the Semi-solid Temperature Interval 114
4.2.6 Characteristics of the Raw Material 114
4.3 Fundamentals of Aluminium–Lithium Alloys 116
4.3.1 State of the Art 116
4.3.2 The System Al–Li–Cu 118
4.3.3 The System Al–Li–Mg 119
4.3.4 The System Al–Li–Cu–Mg 119
4.3.5 The System Al–Li–Cu–Mg–Ag 119
4.3.6 Effects of Alkali Metal Contaminants 120
4.4 Development of Aluminium–Lithium-Alloys for Semi-solid Processing 121
4.4.1 Thermochemical Modelling 121
4.4.2 Choice of a Suitable Basis System 123
4.4.3 Fine Tuning of the Grain Refinement for Al–Li Alloys 124
4.4.4 Assessment of the Raw Material Development Programme 125
4.5 Consideration of the Forming Pressure on Thixoalloy Development 126
4.5.1 Experimental 127
4.5.2 Results of High-pressure DTA 128
4.5.3 Effect of the Solidification Pressure on the Microstructure 130
4.5.4 Possible Impacts of High Pressure for the Thixoforming Process 131
4.6 Preparation of Principle Components from Al–Li Thixoalloys 132
4.6.1 Thixocasting 132
4.6.2 Rheocasting 134
4.7 Production of Al-Li Demonstrators by Rheocasting 137
4.8 Recycling of Aluminium–Lithium Alloys from Thixoforming Processes 139
4.8.1 State of the Art 139
4.8.2 Thermochemical Metal–Salt Equilibria 139
4.8.3 Experimental Validation of the Thermochemical Calculations 140
References 143

5 Thermochemical Simulation of Phase Formation 147
Bengt Hallstedt and Jochen M. Schneider

5.1 Methods and Objectives 147
5.1.1 General 147
5.1.2 Equilibrium Calculations 149
5.1.3 Scheil–Gulliver Calculations 149
5.1.4 Diffusion Simulations with DICTRA 150
5.2 Calculations for the Tool Steel X210CrW12 150
5.2.1 Phase Diagram 150
5.2.2 Solidification 151
5.2.3 Determination of Liquid Fraction 152
5.2.4 Origins and Consequences of Compositional Variations 153
5.2.5 Enthalpy and Heat Capacity 155
5.2.6 Density 156
5.2.7 Melting 156
5.2.8 Suitability for Semi-solid Processing 158
5.3 Calculations for the Bearing Steel 100Cr6 159
5.3.1 Phase Diagram 159
5.3.2 Solidification 159
5.3.3 Compositional Variations 160
5.3.4 Enthalpy, Heat Capacity and Density 161
5.3.5 Suitability for Semi-solid Processing 161
5.4 Calculations for the High-speed Steel HS6-5-2 163
References 165

Part Two Modelling the Flow Behaviour of Semi-solid Metal Alloys 167

6 Modelling the Flow Behaviour of Semi-solid Metal Alloys 169
Michael Modigell, Lars Pape, Ksenija Vasilic, Markus Hufschmidt, Gerhard Hirt, Hideki Shimahara, René Baadjou, Andreas Bührig-Polaczek, Carsten Afrath, Reiner Kopp, Mahmoud Ahmadein, and Matthias Bünck

6.1 Empirical Analysis of the Flow Behaviour 169
6.1.1 Structural Phenomena Influencing the Flow Behaviour 170
6.1.2 Mathematical Modelling of the Flow Behaviour 172
6.1.2.1 Approach from Fluid Mechanics 172
6.1.3 Approach from Solid-state Mechanics 174
6.1.4 Experimental Investigations to Determine Model Parameters 175
6.1.5 Experimental Setups 175
6.1.5.1 Rotational Rheometer 175
6.1.5.2 Capillary Rheometer 177
6.1.5.3 Vertical Capillary Rheometer 178
6.1.5.4 Horizontal Capillary Rheometer 179
6.1.5.5 Compression Test 182
6.1.6 Experimental Results and Modelling 183
6.1.6.1 Rotational Rheometer 183
6.1.6.2 Capillary Rheometer 189
6.1.6.3 Compression Tests 193
6.2 Numerical Modelling of Flow Behaviour 196
6.2.1 Motivation 196
6.2.2 Numerical Models Used 197
6.2.2.1 Material Models 197
6.2.2.2 Discretization Methods (Numerical Solution Techniques) 199
6.2.3 Software Packages Used 200
6.2.4 Numerical Examples 201
6.2.4.1 One-phase, Finite Difference, Based on Flow-3d 201
6.2.4.2 Two-phase, Finite Element Based on PETERA 202
6.2.5 Summary 208
6.3 Simulation of Cooling Channel 208
6.3.1 Model Description 209
6.3.2 Determination of Grain Nucleation Parameters 209
6.3.3 Process Simulation 210
6.3.4 Summary 215
References 217

7 A Physical and Micromechanical Model for Semi-solid Behaviour 221
Veronique Favier, Regis Bigot, and Pierre Cezard
7.1 Introduction 221
7.2 Basic Concepts of Micromechanics and Homogenization 222
7.3 Modelling Semi-solid Behaviour 223
7.3.1 Definition of the Representative Volume Element 223
7.3.1.1 Morphological Pattern 223
7.3.1.2 Internal Variable 225
7.3.1.3 Local Behaviours 226
7.3.2 Homogenized Estimate of the Semi-solid Viscosity: Concentration and
Homogenization Steps 227
7.3.2.1 Step a 227
7.3.2.2 Step b 229
7.4 Results and Discussion 229
7.4.1 Isothermal Steady-state Behaviour 229
7.4.2 Isothermal Non-steady-state Behaviour 232
7.4.3 Non-isothermal and Non-steady-state Behaviour 234
7.5 Conclusion 235
References 237

Part Three Tool Technologies for Forming of Semi-solid Metals 239

8 Tool Technologies for Forming of Semi-solid Metals 241
Kirsten Bobzin, Erich Lugscheider, Jochen M. Schneider, Rainer Telle, Philipp Immich, David Hajas, and Simon Münstermann
8.1 Introduction – Suitable Tool Concepts for the Thixoforming Process 241
8.2 Thin-Film PVD/PECVD Coating Concepts for Die Materials 247
8.3 PVD and PECVD Coating Technologies 249
8.4 Multifunctional PVD Composites for Thixoforming Moulds 251
8.4.1 Deposition Process Development of Crystalline PVD Al₂O₃ 254
8.4.1.1 Experimental Details for the Development of γ-Al₂O₃ 255
8.4.1.2 Results and Discussion 255
8.4.1.3 Summary of the Development of the TiAlN–γ-Al₂O₃ Bilayer System 256
8.4.1.4 Upscaling γ-Al₂O₃ from a Laboratory-scale Unit to an Industrial Coating Unit 257
8.4.1.5 Experimental Details for the Development of γ-Al₂O₃ on an Industrial Coating Unit 257
8.4.1.6 Results of the Deposition of γ-Al₂O₃ on an Industrial Coating Unit 258
8.4.2 Deposition Process Development of Crystalline PVD ZrO₂ 260
8.4.2.1 Experimental Details for the Development of t-ZrO₂ 260
8.4.2.2 Results and Discussion 260
8.4.2.3 Summary for the Development of t-ZrO₂ 263
8.4.2.4 Experimental Details on the Development of t-ZrO₂ on an Industrial Coating Unit 263
8.4.2.5 Results of the Deposition of t-ZrO₂ on an Industrial Coating Unit 263
8.4.3 Model and Near Application Tests 265
8.4.4 Applicability of PVD-Coated Dies in Steel Thixoforming 267
8.4.5 Perspectives for the Application of PVD-Coated Dies in Steel Thixoforming 268
8.5 Developing Al₂O₃ PECVD Coatings for Thixoforming Moulds 269
8.5.1 Experimental Procedure 270
8.5.2 Results and Discussion 272
8.5.2.1 Chemical Composition and Constitution 272
8.5.2.2 Film Morphology and Porosity 275
8.5.2.3 Mechanical Properties 277
8.5.3 Conclusions 280
8.6 Bulk Ceramic Forming Tools 281
Part Four: Forming of Semi-solid Metals

9 Rheocasting of Aluminium Alloys and Thixocasting of Steels

Matthias Bünck, Fabian Küthe, and Andreas Bührig-Polaczek

9.1 Casting of Semi-solid Slurries 311
9.2 SSM Casting Processes 312
9.2.1 Developmental History of the Part Liquid Aluminium Processing 314
9.3 Thixocasting of Steel Alloys 319
9.3.1 Inductive Heating for Steels: Adaptation and Process Control 319
9.3.2 Casting Technology and Systems 323
9.3.2.1 Systems Engineering for Thixo- and Rheoprocesses 323
9.3.2.2 Process-adapted Shot Chamber System 323
9.3.2.3 Technological Design Layout 325
9.3.3 Model Tests 326
9.3.3.1 Investigations on Mould Filling Behaviour (Step Die) 327
9.3.3.2 Determination of Flow Length Capabilities (Meander Die) 328
9.3.3.3 Examinations of the Wear Behaviour of the Form Tools 330
9.3.4 Demonstrators and Real Parts 335
9.3.4.1 Impeller 335
9.3.4.2 Kitchen and Diving Knives 337
9.4 Rheoroute 342
9.4.1 Cooling Channel Process 343
9.4.1.1 Parameters: Seed Crystal Multiplication on the Cooling Channel 344
9.4.1.2 Parameters: Cooling to the Process Temperature 349
XII | Contents

9.4.1.3 Simulation Results 350
9.4.1.4 Oxidation 355
9.4.1.5 Summary 355
9.4.2 Rheo Container Process (RCP) 355
9.4.3 Demonstrator: Tie Rod 357
9.4.3.1 Thixocasting: A356 358
9.4.3.2 Aluminium–Lithium Alloy 358
9.4.3.3 RCP: AlLi2.1Mg5.5 358
9.4.3.4 Thixocasting of Tailored AlLi2.1Mg5.5 360
9.4.3.5 Cooling Channel Process: A356 362
9.5 Assessment and Outlook 364
9.5.1 Rheo Processes 364
9.5.2 Thixocasting of Steels 364
References 365

10 Thixoforging and Rheoforging of Steel and Aluminium Alloys 369
Gerhard Hirt, René Boadjou, Frederik Knauf, Ingold Seidl, Hideki Shimahara,
Dirk Abel, Reiner Kopp, Rainer Gasper, and Alexander Schönbohm

10.1 Introduction 369
10.2 Forging in the Semi-solid State 371
10.3 Heating and Forming Operations 373
10.3.1 Induction Process 373
10.3.1.1 Heat Transfer Equations 375
10.3.1.2 Modelling of Inductive Heating with the Finite Difference
Method (FDM) 377
10.3.1.3 Control of Inductive Heating 377
10.3.2 Thixoforging and Thixo Lateral Extrusion
of Aluminium 383
10.3.3 Thixo Lateral Extrusion of Steel 385
10.3.4 Thixoforging of Steel 387
10.3.5 Thixojoining of Steel 389
10.3.6 Automated Thixoforming – Thixo Cell 391
10.3.6.1 Feedstock Magazine and Unloading Unit 391
10.3.6.2 Robot with Gripper 392
10.3.6.3 Forming Aggregates 392
10.3.6.4 Sequence Control of the Plant 392
10.3.6.5 Master Process Controller 392
10.3.6.6 Control of the Forming Process 394
10.3.7 Rheoforging of Steel 395
10.4 Simulation of the Thixoforming Process 399
10.4.1 Material Properties and Boundary Conditions 399
10.4.1.1 Radiation 399
10.4.1.2 Heat Transfer Coefficient Between Workpiece
and Die 400
10.4.2 Simulation of a Thixoforged Component 401
Chapter 11: Thixoextrusion

11.1 Introduction 411
11.2 State of the Art 412
11.3 Tool Concepts 416
11.3.1 Isothermal Tool Concept 416
11.3.2 Non-isothermal Tool Concept 416
11.4 Isothermal Thixoextrusion 418
11.4.1 Experimental Strategy, Tools and Process Parameters 418
11.4.2 Extrusion Performance and Bar Analysis 420
11.4.3 Upscaling of Isothermal Thixoextrusion 424
11.4.4 Summary and Discussion 427
11.5 Non-isothermal Thixoextrusion 429
11.5.1 Experimental Strategy, Tools and Process Parameters 429
11.5.2 Extrusion Performance and Evaluation for Experiments Without Cooling 432
11.5.3 Estimation of the Material Dwell Time Required in the Extrusion Channel 432
11.5.4 Extrusion Performance and Evaluation for Experiments with Cooling 433
11.5.5 Numerical Simulation of the Thixoextrusion Process 436
11.5.6 Summary and Discussion 439
11.6 Conclusion 440
References 442

Index 443