MIMO RADAR
SIGNAL PROCESSING

Edited by

JIAN LI
PETRE STOICA

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

PREFACE xiii
CONTRIBUTORS xvii

1 MIMO Radar — Diversity Means Superiority
Jian Li and Petre Stoica

1.1 Introduction 1
1.2 Problem Formulation 4
1.3 Parameter Identifiability 5
 1.3.1 Preliminary Analysis 5
 1.3.2 Sufficient and Necessary Conditions 7
 1.3.3 Numerical Examples 8
1.4 Nonparametric Adaptive Techniques for Parameter Estimation 11
 1.4.1 Absence of Array Calibration Errors 12
 1.4.2 Presence of Array Calibration Errors 15
 1.4.3 Numerical Examples 18
1.5 Parametric Techniques for Parameter Estimation 28
 1.5.1 ML and BIC 28
 1.5.2 Numerical Examples 34
1.6 Transmit Beampattern Designs 35
 1.6.1 Beampattern Matching Design 35
 1.6.2 Minimum Sidelobe Beampattern Design 38
 1.6.3 Phased-Array Beampattern Design 39
2 MIMO Radar: Concepts, Performance Enhancements, and Applications

Keith W. Forsythe and Daniel W. Bliss

2.1 Introduction
 2.1.1 A Short History of Radar
 2.1.2 Definition and Characteristics of MIMO Radar
 2.1.3 Uses of MIMO Radar
 2.1.4 The Current State of MIMO Radar Research
 2.1.5 Chapter Outline

2.2 Notation

2.3 MIMO Radar Virtual Aperture
 2.3.1 MIMO Channel
 2.3.2 MIMO Virtual Array: Resolution and Sidelobes

2.4 MIMO Radar in Clutter-Free Environments
 2.4.1 Limitations of Cramér–Rao Estimation Bounds
 2.4.2 Signal Model
 2.4.3 Fisher Information Matrix
 2.4.4 Waveform Correlation Optimization
 2.4.5 Examples

2.5 Optimality of MIMO Radar for Detection
 2.5.1 Detection
 2.5.2 High SNR
 2.5.3 Weak-Signal Regime
 2.5.4 Optimal Beamforming without Search
 2.5.5 Nonfading Targets
 2.5.6 Some Additional Benefits of MIMO Radar

2.6 MIMO Radar with Moving Targets in Clutter: GMTI Radars
 2.6.1 Signal Model
 2.6.2 Localization and Adapted SNR
 2.6.3 Inner Products and Beamwidths
 2.6.4 SNR Loss
3 Generalized MIMO Radar Ambiguity Functions

Geoffrey San Antonio, Daniel R. Fuhrmann, and Frank C. Robey

3.1 Introduction 123
3.2 Background 124
3.3 MIMO Signal Model 127
3.4 MIMO Parametric Channel Model 131
 3.4.1 Transmit Signal Model 131
 3.4.2 Channel and Target Models 132
 3.4.3 Received Signal Parametric Model 133
3.5 MIMO Ambiguity Function 134
 3.5.1 MIMO Ambiguity Function Composition 137
 3.5.2 Cross-Correlation Function under Model Simplifications 138
 3.5.3 Autocorrelation Function and Transmit Beampatterns 141
3.6 Results and Examples 143
 3.6.1 Orthogonal Signals 143
 3.6.2 Coherent Signals 147
3.7 Conclusion 149
References 150
CONTENTS

5.4.3 Optimal Waveform Design 217
5.4.4 Suboptimal Waveform Design 218
5.4.5 Constrained Design 219
5.4.6 The Target and Clutter Models 220
5.4.7 Numerical Examples 221
5.5 MIMO Radar and Phased Arrays 226
5.5.1 Scan Transmit Beam after Receive 228
5.5.2 Adaptation of Transmit Beampattern 229
5.5.3 Combined Transmit–Receive Beamforming 229
Appendix 5A Theoretical SINR Calculation 231
References 232

6 MIMO Radar Spacetime Adaptive Processing and Signal Design 235

Chun-Yang Chen and P. P. Vaidyanathan

6.1 Introduction 236
6.1.1 Notations 238
6.2 The Virtual Array Concept 238
6.3 Spacetime Adaptive Processing in MIMO Radar 242
6.3.1 Signal Model 243
6.3.2 Fully Adaptive MIMO-STAP 246
6.3.3 Comparison with SIMO System 247
6.3.4 The Virtual Array in STAP 248
6.4 Clutter Subspace in MIMO Radar 249
6.4.1 Clutter Rank in MIMO Radar: MIMO Extension of Brennan’s Rule 250
6.4.2 Data-Independent Estimation of the Clutter Subspace with PSWF 253
6.5 New STAP Method for MIMO Radar 257
6.5.1 The Proposed Method 258
6.5.2 Complexity of the New Method 259
6.5.3 Estimation of the Covariance Matrices 259
6.5.4 Zero-Forcing Method 260
6.5.5 Comparison with Other Methods 260
6.6 Numerical Examples 261
6.7 Signal Design of the STAP Radar System 265
6.7.1 MIMO Radar Ambiguity Function 265
6.7.2 Some Properties of the MIMO Ambiguity Function 267
6.7.3 The MIMO Ambiguity Function of Periodic Pulse Radar Signals 272
6.7.4 Frequency-Multiplexed LFM Signals 274
6.7.5 Frequency-Hopping Signals 276
6.8 Conclusions 278
Acknowledgments 279
References 279

7 Slow-Time MIMO SpaceTime Adaptive Processing 283
Vito F. Mecca, Dinesh Ramakrishnan, Frank C. Robey, and Jeffrey L. Krolik

7.1 Introduction 283
7.1.1 MIMO Radar and Spatial Diversity 284
7.1.2 MIMO and Target Fading 286
7.1.3 MIMO and Processing Gain 286
7.2 SIMO Radar Modeling and Processing 289
7.2.1 Generalized Transmitted Radar Waveform 289
7.2.2 SIMO Target Model 290
7.2.3 SIMO Covariance Models 291
7.2.4 SIMO Radar Processing 292
7.3 Slow-Time MIMO Radar Modeling 293
7.3.1 Slow-Time MIMO Target Model 293
7.3.2 Slow-Time MIMO Covariance Model 295
7.4 Slow-Time MIMO Radar Processing 297
7.4.1 Slow-Time MIMO Beampattern and VSWR 299
7.4.2 Subarray Slow-Time MIMO 301
7.4.3 SIMO versus Slow-Time MIMO Design Comparisons 301
7.4.4 MIMO Radar Estimation of Transmit–Receive Directionality Spectrum 302
7.5 OTHr Propagation and Clutter Model 303
7.6 Simulations Examples 307
7.6.1 Postreceive/Transmit Beamforming 307
7.6.2 SINR Performance 311
7.6.3 Transmit–Receive Spectrum 315
7.7 Conclusion 316
Acknowledgment 316
References 316

8 MIMO as a Distributed Radar System 319
H. D. Griffiths, C. J. Baker, P. F. Sammartino, and M. Rangaswamy

8.1 Introduction 319
8.2 Systems 321
8.2.1 Signal Model 323
8.2.2 Spatial MIMO System 325
CONTENTS

8.2.3 Netted Radar Systems 325
8.2.4 Decentralized Radar Network (DRN) 327

8.3 Performance 329
8.3.1 False-Alarm Rate (FAR) 329
8.3.2 Probability of Detection (P_d) 336
8.3.3 Jamming Tolerance 348
8.3.4 Coverage 352

8.4 Conclusions 359
Acknowledgment 361
References 361

9 Concepts and Applications of A MIMO Radar System with Widely Separated Antennas 365

Hana Godrich, Alexander M. Haimovich, and Rick S. Blum

9.1 Background 365
9.2 MIMO Radar Concept 369
9.2.1 Signal Model 369
9.2.2 Spatial Decorrelation 373
9.2.3 Other Multiple Antenna Radars 375
9.3 NonCoherent MIMO Radar Applications 377
9.3.1 Diversity Gain 377
9.3.2 Moving-Target Detection 380
9.4 Coherent MIMO Radar Applications 383
9.4.1 Ambiguity Function 385
9.4.2 CRLB 388
9.4.3 MLE Target Localization 390
9.4.4 BLUE Target Localization 393
9.4.5 GDOP 395
9.4.6 Discussion 399

9.5 Chapter Summary 399
Appendix 9A Deriving the FIM 400
Appendix 9B Deriving the CRLB on the Location Estimate Error 403
Appendix 9C MLE of Time Delays — Error Statistics 405
Appendix 9D Deriving the Lowest GDOP for Special Cases 407
9D.1 Special Case: $N \times N$ MIMO 407
9D.2 Special Case: $1 \times N$ MIMO 408
9D.3 General Case: $M \times N$ MIMO 408

Acknowledgments 408
References 408
10 SpaceTime Coding for MIMO Radar

Antonio De Maio and Marco Lops

10.1 Introduction 411
10.2 System Model 415
10.3 Detection In MIMO Radars 417
 10.3.1 Full-Rank Code Matrix 419
 10.3.2 Rank 1 Code Matrix 420
10.4 Spacetime Code Design 421
 10.4.1 Chernoff-Bound-Based (CBB) Code Construction 423
 10.4.2 SCR-Based Code Construction 426
 10.4.3 Mutual-Information-Based (MIB) Code Construction 427
10.5 The Interplay Between STC and Detection Performance 429
10.6 Numerical Results 431
10.7 Adaptive Implementation 437
10.8 Conclusions 441
Acknowledgment 442
References 442

INDEX 445