About the Author xi

1. The Fundamentals
 Why Use FPGAs? 1
 Applications 3
 Some Technology Background 4
 Fusible-link Technology 4
 FPGA Programming Technologies 7
 Instant Summary 12

2. FPGA Architectures
 More on Programming Technologies 14
 SRAM-based Devices 14
 Antifuse-based Devices 16
 E²PROM/FLASH-based Devices 17
 Hybrid FLASH-SRAM Devices 18
 Fine-, Medium-, and Coarse-grained Architectures 18
 Logic Blocks 19
 MUX-based 19
 LUT-based 20
 LUT versus Distributed RAM versus SR 22
 CLBs versus LABs versus Slices 23
 Logic Cells/Logic Elements 24
 Slicing and Dicing 24
 CLBs and LABs 25
 Distributed RAMs and Shift Registers 26
 Embedded RAMs 27
 Embedded Multipliers, Adders, etc. 27
 Embedded Processor Cores 29
 Hard Microprocessor Cores 30
 Soft Microprocessor Cores 31
 Clock Managers 32
 Clock Trees 32
 Clock Managers 33
3. Programming (Configuring) an FPGA

Configuration Cells 50
Antifuse-based FPGAs 51
SRAM-based FPGAs 51
 Programming Embedded (Block) RAMs, Distributed RAMs, etc. 52
 Multiple Programming Chains 53
 Quickly Reinitializing the Device 53
Using the Configuration Port 53
 Serial Load with FPGA as Master 54
 Parallel Load with FPGA as Master 55
 Parallel Load with FPGA as Slave 56
 Serial Load with FPGA as Slave 57
Using the JTAG Port 58
Using an Embedded Processor 59
Instant Summary 60

4. FPGA vs. ASIC Designs

 When You Switch from ASIC to FPGA Design, or Vice Versa 62
Coding Styles 62
Pipelining and Levels of Logic 62
 Levels of Logic 64
Asynchronous Design Practices 65
 Asynchronous Structures 65
 Combinational Loops 65
 Delay Chains 65
Clock Considerations 65
 Clock Domains 65
 Clock Balancing 65
 Clock Gating versus Clock Enabling 66
Contents

PLLs and Clock Conditioning Circuitry 66
Reliable Data Transfer across Multiclock Domains 66

Register and Latch Considerations 67
Latches 67
Flip-flops with both “Set” and “Reset” Inputs 67
Global Resets and Initial Conditions 67

Resource Sharing (Time-Division Multiplexing) 67
Use It or Lose It! 67
But Wait, There’s More 68

State Machine Encoding 68
Test Methodologies 69

Migrating ASIC Designs to FPGAs and Vice Versa 69
Alternative Design Scenarios 69

Instant Summary 73

5. “Traditional” Design Flows 76

Schematic-based Design Flows 81
Back-end Tools like Layout 81
CAE + CAD = EDA 81
A Simple (early) Schematic-driven ASIC Flow 81
A Simple (early) Schematic-driven FPGA Flow 83
Flat versus Hierarchical Schematics 86
Schematic-driven FPGA Design Flows Today 88

HDL-based Design Flows 89
Advent of HDL-based Flows 89
A Plethora of HDLs 96
Points to Ponder 103

Instant Summary 106

6. Other Design Flows 108

C/C++-based Design Flows 110
C versus C++ and Concurrent versus Sequential 110
SystemC-based Flows 112
Augmented C/C++-based Flows 117
Pure C/C++-based Flows 120
Different Levels of Synthesis Abstraction 123
Mixed-language Design and Verification Environments 124

DSP-Based Design Flows 125
Alternative DSP Implementations 126
FPGA-centric Design Flows for DSPs 131
Mixed DSP and VHDL/Verilog etc. Environments 139

www.newnespress.com
Embedded Processor-based Design Flows 140
 Hard versus Soft Cores 142
 Partitioning a Design into Its Hardware and Software Components 145
 Using an FPGA as Its Own Development Environment 147
 Improving Visibility in the Design 147
 A Few Coverification Alternatives 148
Instant Summary 153

7. Using Design Tools 156

Simulation Tools
 Event-driven Logic Simulators 156
 Logic Values and Different Logic Value Systems 158
 Mixed-language Simulation 159
 Alternative Delay Formats 160
 Cycle-based Simulators 163
 Choosing a Logic Simulator 165

Synthesis (Logic/HDL versus Physically Aware) 166
 Logic/HDL Synthesis Technology 166
 Physically Aware Synthesis Technology 167
 Retiming, Replication, and Resynthesis 168

Timing Analysis 169
 Static Timing Analysis 169
 Statistical Static Timing Analysis 170

Verification in General 171
 Verification IP 171
 Verification Environments and Creating Testbenches 173
 Analyzing Simulation Results 174

Formal Verification 174
 Different Flavors of Formal Verification 174
 Terminology and Definitions 176
 Alternative Assertion/Property Specification Techniques 178
 Static Formal versus Dynamic Formal 179

Miscellaneous 182
 HDL to C Conversion 182
 Code Coverage 182
 Performance Analysis 183

Instant Summary 184

8. Choosing the Right Device 185

Choosing Technology 187
Contents

Basic Resources and Packaging 187
General-purpose I/O Interfaces 188
Embedded Multipliers, RAMs, etc. 188
Embedded Processor Cores 189
Gigabit I/O Capabilities 189
IP Availability 189
Speed Grades 190
Future FPGA Developments 191
Instant Summary 196

Index 197