Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>Preface to the Second Edition</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>About the Authors</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview of Projection Displays</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Book Organization</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>What is not Covered</td>
<td>4</td>
</tr>
<tr>
<td>2 Markets and Applications</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Overview</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Microdisplays, Light Valves and Light Amplifiers</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Emissive Systems</td>
<td>8</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Laser-based Projection Technology</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Applications and Performance Requirements</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Differentiators among Projectors</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Requisite Luminance Levels</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Flux requirement for presentation and auditorium applications</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Resolution</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Electronic Cinema</td>
<td>15</td>
</tr>
<tr>
<td>3 Emissive Image Sources</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Projection CRTs</td>
<td>17</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Luminous Output of Projection CRTs</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Phosphors</td>
<td>19</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Resolution of Projection CRTs</td>
<td>22</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Spot Size of Beam</td>
<td>24</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Light Collection/Curvature</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Field-emission Devices</td>
<td>26</td>
</tr>
<tr>
<td>4 Liquid Crystal Light Valves and Microdisplays</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Active Matrices</td>
<td>30</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Operation of Active-matrix Circuits</td>
<td>31</td>
</tr>
</tbody>
</table>
CONTENTS

4.1.1.1 Effects of leakage
4.1.1.2 Charging currents

4.1.2 Technologies
4.1.2.1 α-Si TFTs
4.1.2.2 Poly-Si TFTs
4.1.2.3 Crystalline silicon active matrices
4.1.2.4 Active matrices based on two terminal devices

4.2 Liquid Crystal Effects
4.2.1 Liquid Crystal Cells
4.2.2 Nematic Cells
4.2.2.1 Parallel aligned layer cells
4.2.2.2 Twisted nematic cells
4.2.3 Polymer-dispersed Liquid Crystal (PDLC)
4.2.4 Other Liquid Crystal Effects
4.2.5 Liquid Crystal Effects for Reflective Microdisplays
4.2.6 Liquid Crystal Inversion

5 Micro-electromechanical Devices
5.1 DMD
5.1.1 Device Operation
5.1.2 Gray Scale
5.1.3 Contrast and DLP Pixel Design
5.2 Linear MEMS Arrays
5.2.1 Grating Light Valve
5.2.2 GEMS System
5.3 MEMS Scanning Mirrors

6 Filters, Integrators and Polarization Components
6.1 Factors affecting Projector Optical Performance
6.2 Component Efficiency
6.3 Spectral Filters
6.3.1 Fresnel Reflection at Optical Surfaces
6.3.2 Dichroic Filters
6.3.2.1 Dichroic filters at non-normal incidence
6.3.2.2 Dichroic filters in polarized light
6.3.2.3 Dichroic filters in the imaging path
6.3.2.4 Anti-reflection coatings
6.3.3 Absorptive Filters
6.3.4 Electrically Tunable Color Filters
6.3.5 Mirrors
6.3.6 Total Internal Reflection
6.3.6.1 TIR prisms for angular separation
6.3.7 Filters for UV Control
6.3.8 Filters for IR Control
6.3.9 Indium-Tin Oxide and Other Transparent Electrodes
6.4 Integrators
6.4.1 Lenslet Integrators
6.4.2 Rod Integrators
6.4.3 Integrators for Projectors with Laser or LED Illumination
6.4.4 Other Integrator Types
6.4.5 Light Guides
6.5 Polarization Components
 6.5.1 Absorptive Polarizers
 6.5.2 Reflective Polarizer Technology
 6.5.2.1 Brewster angle reflection
 (a) Brewster plate 109
 (b) MacNeille polarizing prisms 111
 6.5.2.2 Birefringent multilayer reflective polarizer 114
 6.5.2.3 Bertrand-Feussner prism 116
 6.5.2.4 Wire grid polarizers 117
 6.5.2.5 Other reflective polarizers 120
 6.5.3 Polarization Conversion Systems
 6.5.3.1 Polarization recycling 123
 6.5.4 Polarizing Beam Splitters in the Imaging Path
 6.5.5 Compensation Films

7 Projection Lenses and Screens
 7.1 Projection Lenses
 7.1.1 Three-lens Projectors
 7.1.2 Single-lens Projectors 132
 7.1.3 Zoom Lenses, Focal Length and Throw Ratio
 7.1.4 Projection Lens Offset 137
 7.1.5 Matching the Projection Lens to the Illumination Optical Path
 7.2 Projection Screens
 7.2.1 Projection Screen Gain
 7.2.2 Multiple Projectors and Screen Gain
 7.2.3 Rear Projection Screens
 7.2.3.1 Fresnel lens 147
 7.2.3.2 Fresnel lenses for thin RPTV systems 150
 7.2.3.3 Rear projection CRT screens
 (a) Double lenticular screens
 (b) TIR screens
 7.2.3.4 Microdisplay and light-valve rear-projection systems
 7.2.4 Front Projection Screens
 7.2.4.1 Light rejecting front projection screens
 7.3 Speckle in Projected Images
 7.3.1 Speckle in Rear Projection Systems
 7.3.2 Speckle with Laser Illumination

8 Light Sources for Light-valve and Microdisplay Projection Systems
 8.1 Lamp Parameters
 8.2 Types of Projection Lamps
 8.2.1 Xenon Lamps
 8.2.2 Metal-halide Types
 8.2.3 The UHP Lamp
 8.2.3.1 Temporal properties of UHP lamps
 8.2.4 Tungsten-halogen Lamps
 8.2.5 Electrodeless Lamps
 8.3 Lasers as Projection Light Sources
 8.3.1 Choice of Laser Wavelengths
 8.3.2 Laser Designs Suitable for Projection Applications
CONTENTS

8.3.2.1 Laser architectures 184
8.3.2.2 Laser wavelength generation 187
8.3.3 Laser Safety 189
8.4 Light Emitting Diodes as Projection Light Sources 190
8.4.1 Performance Improvements in LEDs for Projection 191
8.4.2 Color with LEDs 192
8.4.3 Thermal Issues with LEDs 194
8.4.4 LED Drive Issues 195
8.5 Efficacy and Lumen Output 198
8.6 Spectral Characteristics of Lamps 200
8.6.1 Lamp Spectral Emission Lines 200
8.7 Light Distribution from a HID Lamp 201
8.8 Lamp Life 202
8.8.1 Lamp Servicing 203
8.8.2 Failure Mechanisms 203
8.8.2.1 Measurement of lamp life 203
8.9 Reflectors and Other Collection Systems 206
8.9.1 Reflectors with Conic Sections 206
8.9.2 Compound Reflectors 206
8.9.3 Constant Magnification Reflectors 208
8.9.4 Refractive Collection Systems 208
8.9.5 Collection Systems for LEDs 209
8.10 Lamp Ballasts and Ignitors 212

9 Scanned Projection Systems 217
9.1 CRT Projectors 217
9.1.1 Three-lens CRT Projectors 218
9.1.2 One-lens CRT Projectors 220
9.1.3 Convergence of CRT Projection Systems 221
9.1.4 Lumen Output of CRT Projectors 223
9.2 Scanned Laser Projectors 225
9.2.1 Raster Scan Patterns 226
9.2.2 Laser Projectors with Two-axis Scanning 228
9.2.3 Laser Projectors with a Single Scanning Axis 229

10 Microdisplay System Architectures 233
10.1 Microdisplay Systems 233
10.2 Three-panel Systems with Transmissive Microdisplays 234
10.2.1 Three-panel Equal Path 235
10.2.2 Unequal Path Systems 237
10.3 Three-panel LCoS Projector Architectures 239
10.3.1 Three Polarizing Beamsplitters with a Dichroic Combiner 239
10.3.2 Four-cube LCoS Architectures 240
10.3.2.1 Four-panel, high contrast LCoS architecture 241
10.3.3 Three-panel, Three-lens Projectors 242
10.4 Single-panel Projectors 243
10.4.1 Sub-pixelated Projectors 244
10.4.1.1 Microfilter projector 244
10.4.1.2 Angular color separation projectors 245
10.4.1.3 Resolution of sub-pixelated projectors 246
CONTENTS ix

10.4.2 Color-field Sequential Systems 249

 10.4.2.1 Addressing color-field sequential systems 249
 10.4.2.2 Color wheel and related systems 251
 10.4.2.3 Three-light-source field sequential systems 253
 10.4.2.4 Address-and-flash systems 254
 10.4.2.5 Rotating drum systems 255
 10.4.2.6 Scrolling color systems 256

10.5 Two-panel Systems 259

10.6 Schlieren Optics-based Projectors 259

 10.6.1 Dark Field and Bright Field Systems 260
 10.6.2 Schlieren Light-valve Systems 262

10.7 Stereoscopic 3D Projectors 262

 10.7.1 Separation by Polarization 263
 10.7.2 Stereoscopic 3D with Color Separation 263
 10.7.3 Eye-sequential 3D Systems with Active Glasses 264

11 Modeling Lumen Output 269

 11.1 Simplified Model 269

11.2 Light Collection and Étendue 271

 11.2.1 Definition of Étendue 271

 11.2.1.1 Étendue at a flat surface 273
 11.2.2 Étendue Limited Systems 274
 11.2.3 Lumen vs Étendue Function 274

 11.2.3.1 Étendue conserving transformations 278
 11.2.3.2 Shape conversion 278
 11.2.3.3 Usable étendue 279

 11.2.3.4 Limitations of lumen vs étendue model 281

11.3 Integrators and Lumen Throughput 281

 11.3.1 Overfill Losses 282
 11.3.2 Integrator Étendue and Collection Efficiency 283

11.4 Microdisplay and Light-valve Properties 284

 11.4.1 Panel Transmission 284
 11.4.2 Modulation Efficiency 287
 11.4.3 Duty Cycle 287

11.5 Full Colorimetric Model of the Projector 287

 11.5.1 White Light Throughput prior to Color Correction 289
 11.5.2 Color Correction to the desired White Point 291
 11.5.3 Single-panel Color Sequential Projectors 293

 11.5.4 Colorimetric and Throughput Issues with Projectors with more than
 Three Primary Colors 294

 11.5.5 Color Separation Efficiency 294

11.6 Problems with Lumen Throughput Calculations 296

11.7 Lumen Output Variation in Production 296

12 Projector Lumen Throughput 301

 12.1 Throughput of a Simple Transmissive Projector 301
 12.2 Throughput in a Three-panel Projector 304
 12.3 Throughput Estimate using the Full Colorimetric Model 306

13 Characteristics and Characterization 311

 13.1 Characteristics of the Human Visual System 312
 13.2 Spatial Characteristics of the Image 313