Non-Equilibrium Thermodynamics of Heterogeneous Systems

S IG N E K J E L S T R U P D I C K B E D E A U X
Norwegian University of Science and Technology
Contents

Preface .. vii

1 Scope 1
 1.1 What is non-equilibrium thermodynamics? 1
 1.2 Non-equilibrium thermodynamics in the context of other theories 4
 1.3 The purpose of this book 4

2 Why Non-Equilibrium Thermodynamics? 7
 2.1 Simple flux equations 8
 2.2 Flux equations with coupling terms 9
 2.3 Experimental designs and controls 11
 2.4 Entropy production, work and lost work 12
 2.5 Consistent thermodynamic models 14

3 Thermodynamic Relations for Heterogeneous Systems 17
 3.1 Two homogeneous phases separated by a surface in global equilibrium 18
 3.2 The contact line in global equilibrium 22
 3.3 Defining thermodynamic variables for the surface 23
 3.4 Local thermodynamic identities 29
 3.5 Defining local equilibrium 32
 3.A Appendix: Partial molar properties 35
 3.A.1 Homogeneous phases 36
 3.A.2 The surface 38
 3.A.3 The standard state 40

Part A: General Theory 45

4 The Entropy Production for a Homogeneous Phase 47
 4.1 Balance equations 49
 4.2 The entropy production 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Why one should not use the dissipation function</td>
<td>56</td>
</tr>
<tr>
<td>4.2.2</td>
<td>States with minimum entropy production</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Examples</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Frames of reference for fluxes in homogeneous systems</td>
<td>64</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Definitions of frames of reference</td>
<td>64</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Transformations between the frames of reference</td>
<td>66</td>
</tr>
<tr>
<td>4.4.A</td>
<td>Appendix: The first law and the heat flux</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>The Excess Entropy Production for the Surface</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>The discrete nature of the surface</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>The behavior of the electric fields and potential through the surface</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>Balance equations</td>
<td>77</td>
</tr>
<tr>
<td>5.4</td>
<td>The excess entropy production</td>
<td>79</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Reversible processes at the interface and the Nernst equation</td>
<td>84</td>
</tr>
<tr>
<td>5.4.2</td>
<td>The surface potential jump at the hydrogen electrode</td>
<td>86</td>
</tr>
<tr>
<td>5.5</td>
<td>Examples</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>The Excess Entropy Production for a Three Phase Contact Line</td>
<td>91</td>
</tr>
<tr>
<td>6.1</td>
<td>The discrete nature of the contact line</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Balance equations</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>The excess entropy production</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Stationary states</td>
<td>96</td>
</tr>
<tr>
<td>6.5</td>
<td>Concluding comment</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>Flux Equations and Onsager Relations</td>
<td>99</td>
</tr>
<tr>
<td>7.1</td>
<td>Flux-force relations</td>
<td>99</td>
</tr>
<tr>
<td>7.2</td>
<td>Onsager's reciprocal relations</td>
<td>100</td>
</tr>
<tr>
<td>7.3</td>
<td>Relaxation to equilibrium. Consequences of violating Onsager relations</td>
<td>104</td>
</tr>
<tr>
<td>7.4</td>
<td>Force-flux relations</td>
<td>105</td>
</tr>
<tr>
<td>7.5</td>
<td>Coefficient bounds</td>
<td>106</td>
</tr>
<tr>
<td>7.6</td>
<td>The Curie principle applied to surfaces and contact lines</td>
<td>108</td>
</tr>
<tr>
<td>8</td>
<td>Transport of Heat and Mass</td>
<td>111</td>
</tr>
<tr>
<td>8.1</td>
<td>The homogeneous phases</td>
<td>112</td>
</tr>
<tr>
<td>8.2</td>
<td>Coefficient values for homogeneous phases</td>
<td>114</td>
</tr>
<tr>
<td>8.3</td>
<td>The surface</td>
<td>117</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Heats of transfer for the surface</td>
<td>119</td>
</tr>
</tbody>
</table>
8.4 Solution for the heterogeneous system 122
8.5 Scaling relations between surface and bulk resistivities 125

9 Transport of Heat and Charge 127
9.1 The homogeneous phases 128
9.2 The surface 130
9.3 Thermoelectric coolers 132
9.4 Thermoelectric generators 133
9.5 Solution for the heterogeneous system 135

10 Transport of Mass and Charge 139
10.1 The electrolyte 140
10.2 The electrode surfaces 143
10.3 Solution for the heterogeneous system 146
10.4 A salt power plant 147
10.5 Electric power from volume flow 148
10.6 Ionic mobility model for the electrolyte 150
10.7 Ionic and electronic model for the surface 154

Part B: Applications 155

11 Evaporation and Condensation 157
11.1 Evaporation and condensation in a pure fluid 158
11.1.1 The entropy production and the flux equations 158
11.1.2 Interface resistivities from kinetic theory 165
11.2 The sign of the heats of transfer of the surface 167
11.3 Coefficients from molecular dynamics simulations 169
11.4 Evaporation and condensation in a two-component fluid 176
11.4.1 The entropy production and the flux equations 176
11.4.2 Interface resistivities from kinetic theory 179

12 Multi-Component Heat and Mass Diffusion 183
12.1 The homogeneous phases 184
12.2 The Maxwell–Stefan equations for multi-component diffusion 186
12.3 The Maxwell–Stefan equations for the surface 188
12.4 Multi-component diffusion 192
12.4.1 Prigogine's theorem 192
12.4.2 Diffusion in the solvent frame of reference 193
12.4.3 Other frames of reference 195
12.4.4 An example: Kinetic demixing of oxides 200
12.5 A relation between the heats of transfer and the enthalpy

13 A Nonisothermal Concentration Cell 205

13.1 The homogeneous phases 207

13.1.1 Entropy production and flux equations for the anode 207

13.1.2 Position dependent transport coefficients 210

13.1.3 The profiles of the homogeneous anode 211

13.1.4 Contributions from the cathode 212

13.1.5 The electrolyte contribution 213

13.2 Surface contributions 214

13.2.1 The anode surface 214

13.2.2 The cathode surface 217

13.3 The thermoelectric potential 218

14 The Transported Entropy 221

14.1 The Seebeck coefficient of cell a 222

14.2 The transported entropy of Pb$^{2+}$ in cell a 226

14.3 The transported entropy of the cation in cell b 227

14.4 The transported entropy of the ions cell c 228

14.5 Transformation properties 230

14.6 Concluding comments 232

15 Adiabatic Electrode Reactions 235

15.1 The homogeneous phases 236

15.1.1 The silver phases 236

15.1.2 The silver chloride phases 236

15.1.3 The electrolyte 237

15.2 The interfaces 237

15.2.1 The silver-silver chloride interfaces 237

15.2.2 The silver chloride-electrolyte interfaces 239

15.3 Temperature and electric potential profiles 240

16 The Liquid Junction Potential 249

16.1 The flux equations for the electrolyte 250

16.2 The liquid junction potential 253

16.3 Liquid junction potential calculations compared 255

16.4 Concluding comments 258
17 The Formation Cell 261
17.1 The isothermal cell 263
17.1.1 The electromotive force 263
17.1.2 The transference coefficient of the salt in the electrolyte 263
17.1.3 An electrolyte with a salt concentration gradient 265
17.1.4 The Planck potential derived from ionic fluxes and forces 267
17.2 A non-isothermal cell with a non-uniform electrolyte 268
17.2.1 The homogeneous anode phase 269
17.2.2 The electrolyte 270
17.2.3 The surface of the anode 272
17.2.4 The homogeneous phases and the surface of the cathode 273
17.2.5 The cell potential 275
17.3 Concluding comments 275

18 Power from Regular and Thermal Osmosis 277
18.1 The potential work of a salt power plant 277
18.2 The membrane as a barrier to transport of heat and mass 279
18.3 Membrane transport of heat and mass 281
18.4 Osmosis 283
18.5 Thermal osmosis 285

19 Modeling the Polymer Electrolyte Fuel Cell 289
19.1 The potential work of a fuel cell 290
19.2 The cell and its five subsystems 291
19.3 The electrode backing and the membrane 293
19.3.1 The entropy production in the homogeneous phases 293
19.3.2 The anode backing 295
19.3.3 The membrane 298
19.3.4 The cathode backing 300
19.4 The electrode surfaces 301
19.4.1 The anode catalyst surface 304
19.4.2 The cathode catalyst surface 306
19.5 A model in agreement with the second law 307
19.6 Concluding comments 310
20 Measuring Membrane Transport Properties 311
20.1 The membrane in equilibrium with electrolyte solutions 312
20.2 The membrane resistivity 312
20.3 Ionic transport numbers 316
20.4 The transference number of water and the water permeability 319
20.5 The Seebeck coefficient 322
20.6 Interdiffusion coefficients 323

21 The Impedance of an Electrode Surface 327
21.1 The hydrogen electrode. Mass balances 328
21.2 The oscillating field 331
21.3 Reaction Gibbs energies 332
21.4 The electrode surface impedance 332
 21.4.1 The adsorption-diffusion layer in front of the catalyst 332
 21.4.2 The charge transfer reaction 336
 21.4.3 The impedance spectrum 337
21.5 A test of the model 338
21.6 The reaction overpotential 339

22 Non-Equilibrium Molecular Dynamics Simulations 341
22.1 The system 344
 22.1.1 The interaction potential 346
22.2 Calculation techniques 347
22.3 Verifying the assumption of local equilibrium 351
 22.3.1 Local equilibrium in a homogeneous binary mixture 351
 22.3.2 Local equilibrium in a gas-liquid interface 353
22.4 Verifications of the Onsager relations 356
 22.4.1 A homogeneous binary mixture 356
 22.4.2 A gas-liquid interface 358
22.5 Linearity of the flux-force relations 359
22.6 Molecular mechanisms 359

23 The Non-Equilibrium Two-Phase van der Waals Model 361
23.1 Van der Waals equation of states 363
23.2 Van der Waals square gradient model for the interfacial region 366
23.3 Balance equations 369
23.4 The entropy production 371
23.5 Flux equations 372