Mounting Optics in Optical Instruments

Second Edition

Paul R. Yoder, Jr.

SPIE PRESS
Bellingham, Washington USA
Table of Contents

Preface to 2nd Edition xv
Preface to 1st Edition xix
Terms and Symbols xxi

1. Introduction 1
 1.1 Applications of Optical Components 1
 1.2 Key Environmental Considerations 3
 1.2.1 Temperature 3
 1.2.2 Pressure 5
 1.2.3 Vibration 6
 1.2.3.1 Single frequency periodic 6
 1.2.3.2 Random frequencies 8
 1.2.4 Shock 10
 1.2.5 Moisture, contamination, and corrosion .. 11
 1.2.6 High-energy radiation 13
 1.2.7 Laser damage to optics 13
 1.2.8 Abrasion and erosion 14
 1.2.9 Fungus 14
 1.3 Extreme Service Environments 14
 1.3.1 Near Earth's surface 14
 1.3.2 In outer space 15
 1.4 Environmental Testing 16
 1.4.1 Guidelines 17
 1.4.2 Methods 17
 1.5 Key Material Properties 18
 1.5.1 Optical glasses 19
 1.5.2 Optical plastics 26
 1.5.3 Optical crystals 27
 1.5.4 Mirror materials 27
 1.5.5 Materials for mechanical components .. 27
 1.5.6 Adhesives and sealants 29
 1.6 Dimensional Instability 30
 1.7 Tolerancing Optical and Mechanical Components 30
 1.8 Cost Aspects of Tightened Tolerances on Optics 33
 1.9 Manufacturing Optical and Mechanical Components 36
 1.10 References 40

2. The Optic-to-Mount Interface 43
 2.1 Mechanical Constraints 43
 2.1.1 General considerations 43
 2.1.2 Centering a lens element 44
 2.1.3 Lens interfaces 54
 2.1.3.1 The rim contact interface 54
 2.1.3.2 The surface contact interface 55
 2.1.3.3 Contacting flat bevels 57
 2.1.4 Prism interfaces 57
 2.1.5 Mirror interfaces 60
 2.1.6 Interfaces with other optical components .. 61
 2.2 Consequences of Mounting Forces 61

vii
6. Prism Design

6.1 Principal Functions 205
6.2 Geometric Considerations 205
6.2.1 Refraction and reflection 205
6.2.2 Total internal reflection 211
6.3 Aberration Contributions of Prisms 214
6.4 Typical Prism Configurations 214
6.4.1 Right-angle prism 215
6.4.2 Beamsplitter (or beamcombiner) cube prism 215
6.4.3 Amici prism 216
6.4.4 Porro prism 216
6.4.5 Porro erecting system 217
6.4.6 Abbe version of the Porro prism 220
6.4.7 Abbe erecting system 221
6.4.8 Rhomboid prism 221
6.4.9 Dove prism 222
6.4.10 Double Dove prism 223
6.4.11 Reversion, Abbe Type A, and Abbe Type B prisms 225
6.4.12 Pechan prism 227
6.4.13 Penta prism 227
6.4.14 Roof penta prism 228
6.4.15 Amici/penta erecting system 228
6.4.16 Delta prism 230
6.4.17 Schmidt roof prism 232
6.4.18 The 45-deg Bauernfeind prism 234
6.4.19 Frankford Arsenal prisms nos. 1 and 2 234
6.4.20 Leman prism 236
6.4.21 Internally-reflecting axicon prism 237
6.4.22 Cube corner prism 238
6.4.23 An ocular prism for a coincidence rangefinder 239
6.4.24 Biocular prism system 242
6.4.25 Dispersing prisms 242
6.4.26 Thin wedge prisms 245
6.4.27 Risley wedge system 246
6.4.28 Sliding wedge 248
6.4.29 Focus-adjusting wedge system 248
6.4.30 Anamorphic prism systems 250

6.5 References 251

7. Techniques for Mounting Prisms 253

7.1 Kinematic Mountings 253
7.2 Semikinematic Mountings 254
7.3 The Use of Pads on Cantilevered and Straddling Springs 265
7.4 Mechanically Clamped Nonkinematic Mountings 270
7.5 Bonded Prism Mountings 274
7.5.1 General considerations 274
7.5.2 Examples of bonded prisms 276
7.5.3 Double-sided prism support techniques 279
7.6 Flexure Mountings for Prisms 285
7.7 References 287
8. Mirror Design

8.1 General Considerations 289
8.2 Image Orientation 290
8.3 First- and Second-Surface Mirrors 294
8.4 Ghost Image Formation with Second-Surface Mirrors 296
8.5 Approximation of Mirror Aperture 301
8.6 Weight Reduction Techniques 303
 8.6.1 Contoured-back configurations 304
 8.6.2 Cast ribbed substrate configurations 314
 8.6.3 Built-up structural configurations 315
 8.6.3.1 Egg crate construction 318
 8.6.3.2 Monolithic construction 319
 8.6.3.3 Frit-bonded construction 323
 8.6.3.4 Hextek construction 323
 8.6.3.5 Machined core construction 325
 8.6.3.6 Foam core construction 328
 8.6.3.7 Internally machined mirror construction 332
8.7 Thin Facesheet Configurations 334
8.8 Metallic Mirrors 336
8.9 Metallic Foam Core Mirrors 343
8.10 Pellicles 346
8.11 References 348

9. Techniques for Mounting Smaller Nonmetallic Mirrors 353

9.1 Mechanically Clamped Mirror Mountings 353
9.2 Bonded Mirror Mountings 366
9.3 Compound Mirror Mountings 371
9.4 Flexure Mountings for Smaller Mirrors 380
9.5 Central and Zonal Mountings 388
9.6 Gravitational Effects on Smaller Mirrors 390
9.7 References 396

10. Techniques for Mounting Metallic Mirrors 399

10.1 Single Point Diamond Turning of Metallic Mirrors 399
10.2 Integral Mounting Provisions 412
10.3 Flexure Mountings for Metallic Mirrors 413
10.4 Plating of Metal Mirrors 422
10.5 Interfacing Metallic Mirrors for Assembly and Alignment 424
10.6 References 429

11. Techniques for Mounting Larger Nonmetallic Mirrors 433

11.1 Mounts for Axis-Horizontal Applications 433
 11.1.1 V-mounts 434
 11.1.2 Multipoint edge supports 441
 11.1.3 The “ideal” radial mount 442
 11.1.4 Strap and roller chain supports 445
 11.1.5 Comparison of dynamic relaxation and FEA methods of analysis 449
 11.1.6 Mercury tube supports 451
11.2 Mounts for Axis Vertical Applications 452
 11.2.1 General considerations 452
 11.2.2 Air bag axial supports 453
 11.2.3 Metrology mounts 457
11.3 Mounts for Axis Variable Applications
11.3.1 Counter-weighted lever-type mountings
11.3.2 Hindle mounts for large mirrors
11.3.3 Pneumatic and hydraulic mountings

11.4 Supports for Large, Space-borne Mirrors
11.4.1 The Hubble Space Telescope
11.4.2 The Chandra X-Ray Telescope

11.5 References

12. Aligning Refracting, Reflecting and Catadioptric Systems
12.1 Aligning the Individual Lens
12.1.1 Simple techniques for aligning a lens
12.1.2 Rotating spindle techniques
12.1.3 Techniques using a “Point Source Microscope”

12.2 Aligning Multiple Lens Assemblies
12.2.1 Using an alignment telescope
12.2.2 Aligning microscope objectives
12.2.3 Aligning multiple lenses on a precision spindle
12.2.4 Aberration compensation at final assembly
12.2.5 Selecting aberration compensators

12.3 Aligning Reflecting Systems
12.3.1 Aligning a simple Newtonian telescope
12.3.2 Aligning a simple Cassegrain telescope
12.3.3 Aligning a simple Schmidt camera

12.4 References

13. Estimation of Mounting Stresses
13.1 General Considerations
13.2 Statistical Prediction of Optic Failure
13.3 Rule-of-Thumb Stress Tolerances
13.4 Stress Generation at Point, Line, and Area Contacts
13.5 Peak Contact Stress in an Annular Interface
13.5.1 Stress with a sharp corner interface
13.5.2 Stress with a tangential interface
13.5.3 Stress with a toroidal interface
13.5.4 Stress with a spherical interface
13.5.5 Stress with a flat bevel interface
13.5.6 Parametric comparisons of interface types

13.6 Bending Effects in Asymmetrically Clamped Optics
13.6.1 Bending stress in the optic
13.6.2 Change in surface sagittal depth of a bent optic

13.7 References

14. Effects of Temperature Changes
14.1 Athermalization Techniques for Reflective Systems
14.1.1 Same material designs
14.1.2 Metering rods and trusses
14.2 Athermalization Techniques for Refractive Systems
14.2.1 Passive athermalization
14.2.2 Active compensation

14.3 Effects of Temperature Change on Axial Preload
14.3.1 Axial dimension changes
14.3.2 Quantifying K_3
14.3.2.1 Considering bulk effects only 606
14.3.2.2 Considering other contributing factors 609
14.3.3 Advantages of athermalization and compliance 612
14.4 Radial Effects in Rim Contact Mountings 617
 14.4.1 Radial stress in the optic 618
 14.4.2 Tangential (hoop) stress in the mount wall 620
 14.4.3 Growth of radial clearance at high temperatures 621
 14.4.4 Adding radial compliance to maintain lens centration 622
14.5 Effects of Temperature Gradients 623
 14.5.1 Radial temperature gradients 627
 14.5.2 Axial temperature gradients 629
14.6 Temperature Change-Induced Stresses in Bonded Optics 630
14.7 References 639

15. Hardware Examples 641
 15.1 Infrared Sensor Lens Assembly 641
 15.2 A Family of Commercial Mid-Infrared Lenses 642
 15.3 Using SPDT to Mount and Align Poker Chip Subassemblies 643
 15.4 A Dual Field IR Tracker Assembly 649
 15.5 A Dual Field IR Camera Lens Assembly 651
 15.6 A Passively Stabilized 10:1 Zoom Lens Objective 653
 15.7 A 90-mm, f/2 Projection Lens Assembly 653
 15.8 A Solid Catadioptric Lens Assembly 655
 15.9 An All-Aluminum Catadioptric Lens Assembly 657
 15.10 A Catadioptric Star Mapping Objective Assembly 658
 15.11 A 150-in., f/10 Catadioptric Camera Objective 662
 15.12 The Camera Assembly for the DEIMOS Spectrograph 666
 15.13 Mountings for Prisms in a Military Articulated Telescope 668
 15.14 A Modular Porro Prism Erecting System for a Binocular 673
 15.15 Mounting Large Dispersing Prisms in a Spectrograph Imager 676
 15.16 Mounting Gratings in the FUSE Spectrograph 681
 15.17 The Spitzer Space Telescope 685
 15.18 A Modular Dual Collimator Assembly 689
 15.19 Lens Mountings for the JWST’s NIRCam 694
 15.19.1 Concept for axial constraint of the LIF lens 695
 15.19.2 Concept for radial constraint of the LIF lens 695
 15.19.3 Analytical and experimental verification of the
 Prototype lens mount 696
 15.19.4 Design and initial testing of flight hardware 697
 15.19.5 Long-term stability tests 699
 15.19.6 Further developments 699
 15.20 A Double-Arch Mirror Featuring
 Silicon-Foam-Core-Technology 699
15.21 References 704

Appendix A. Unit Conversion Factors 709
Appendix B. Mechanical Properties of Materials 711
 Table B1 Optomechanical properties of 50 Schott optical glasses 712
 Table B2 Optomechanical properties of radiation resistant Schott glasses 715
 Table B3 Selected optomechanical characteristics of optical plastics 716
 Table B4 Optomechanical properties of selected alkali halides and
 alkaline earth halides 717

xii
Table B5 Optomechanical properties of selected IR-transmitting glasses and other oxides 719
Table B6 Optomechanical properties of diamond and selected IR-transmitting semiconductor materials 720
Table B7 Mechanical properties of selected IR-transmitting chalcogenide materials 721
Table B8a Mechanical properties of selected nonmetallic mirror substrate materials 722
Table B8b Mechanical properties of selected metallic and composite mirror substrate materials 723
Table B9 Comparison of material figures of merit for mirror design 724
Table B10a Characteristics of aluminum alloys used in mirrors 725
Table B10b Common temper conditions for aluminum alloys 726
Table B10c Characteristics of aluminum matrix composites 726
Table B10d Beryllium grades and some of their properties 727
Table B10e Characteristics of major silicon carbide types 727
Table B11 Comparison of metal matrix and polymer matrix composites 728
Table B12 Mechanical properties of selected metals used for mechanical parts in optical instruments 729
Table B13 Typical characteristics of a generic optical cement 731
Table B14 Typical characteristics of representative structural adhesives 732
Table B15 Typical physical characteristics of representative elastomeric sealants 734
Table B16 Fracture strength S_F of infrared materials 736

Appendix C. Torque-Preload Relationship for a Threaded Retaining Ring 737
Appendix D. Summary of Methods for Testing Optical Components and Optical Instruments under Adverse Environmental Conditions 741

Index 747

CD-ROM (2nd edition) Inside back cover