Hardware-Based Computer Security Techniques to Defeat Hackers

From Biometrics to Quantum Cryptography

Roger Dube
CONTENTS

1 THE ELEMENTS OF COMPUTER SECURITY 1

Cryptography, 2
Symmetric Key Cryptography, 2
Asymmetric Key Cryptography, 3

Passwords and Keys, 5
Password/Key Strength, 6
Password/Key Storage and Theft, 8

Passwords and Authentication, 9
Something You Know, 9
Something You Have, 9
Something You Are, 10

Random-Number Generators, 11
Pseudo-Random-Number Generators (PRGs), 12
Hardware-Based Random-Number Generators, 12
Hybrid Hardware/Software Random-Number Generators, 13

Key Generation, 13

Security and the Internet, 14

References, 16
2 CRYPTOGRAPHY APPROACHES AND ATTACKS

Symmetric Key Cryptography, 17
One-Time Pad, 18
DES and Triple DES, 19
International Data-Encryption Algorithm, 24
Rivest Cipher 4, 24
Blowfish, 28
Advanced Encryption Standard, 29
Quantum Cryptography, 31
Hash Algorithms, 36
The Birthday Paradox and Hash Algorithms, 36

References, 39

3 KEY GENERATION AND DISTRIBUTION APPROACHES AND ATTACKS

Key Generation, 41
Software Key Generation, 43
Hardware Key Generation, 47
Noise-Based Approaches, 47
Noisy Diodes and Resistors, 47
Radio-Frequency Sources, 48
Brownian-Motion Devices, 48
Quantum Devices, 49
Nuclear Decay Devices, 49
Optical Devices, 50
Other Hardware Sources of Randomness, 51

Key Distribution, 51
Key Distribution for Software-Based PRGs, 52
7 SECURE MEMORY MANAGEMENT AND TRUSTED EXECUTION TECHNOLOGY

The Need for Secure Memory Management, 91
Buffer Overflows, 92
Memory Pointer Attacks, 92
The Impact of Memory-Management Attacks, 93
Minimizing Memory-Management Attacks, 93
Platform-Design Considerations, 94
Trusted Execution Technology, 94
 Protected Execution, 95
 Protected Storage, 95
 Protected Input, 95
 Protected Graphics, 95
Environment Authentication and Protected Launch, 96
Domain Manager, 96
Platform and Hardware Requirements, 96
Unplanned Events, 99
Privacy and User Control, 99

8 THE TRUSTED PLATFORM MODULE

The Need for Increased Network and PC Security, 101
Trust, 103
The Need for a Trusted Platform Module, 103
The Concept of Trusted Computing, 104
The Trusted Platform Module, 105
 Structure of the TPM, 107
 The TPM’s Primary Roles, 108
 TPM and Rootkits, 109
Complications Introduced by TPM, 109
Residual Vulnerabilities, 110
Privacy and Digital Rights Management, 111
Concluding Observations on TPM, 113
References, 114

9 FIELD-PROGRAMMABLE GATE ARRAYS 115

Background, 115
Why Use an FPGA?, 116
Security Considerations, 119
Attack Vectors, 120
 Black-Box Attacks, 121
 Readback Attacks, 122
 SRAM FPGAs, 123
 Antifuse FPGAs, 123
 Flash FPGAs, 124
 Indirect Attacks, 124
Preventing Attacks, 124
References, 125

10 HARDWARE-BASED AUTHENTICATION 127

Who is at the Other End?, 127
Authentication of a Person, 128
 Enrollment, 129
 Recognition, 129
 The Use of Multiple Biometrics, 131
Common Biometric Technologies, 132
 Signature, 132
 Face, 133
Gait, 133
Keystroke Timing, 134
Fingerprint, 134
Voiceprint, 136
Retinal Scan, 137
Iris Scan, 138
Palm Print, 138
Hand Geometry, 138
Infrared Thermogram, 139
DNA, 139
Authentication of a Device, 140
Authentication of the Surrounding Environment, 141
Wifi Hotspot, 141
IP address, 142
Clock Skew, 142
GPS, 143
Radio-Frequency Measurements, 144
Radio-Frequency Spectrum, 144
Location Fingerprints, 144
References, 145

11 A CLOSER LOOK AT BIOMETRICS 147

Fingerprint Scanners, 147
Optical Fingerprint Scanners, 148
Ultrasonic Fingerprint Scanners, 152
Capacitance Fingerprint Scanners, 152
E-Field Fingerprint Scanners, 153
The Basics of Fingerprint Analysis, 153
Iris Scans, 156
 Lens, 159
 Detector, 160
Illumination, 160
 Detector Enclosure, 160
 Human Interface, 160
 Algorithm, 161
Retinal Scans, 161
 Illumination, 162
 Detector, 163
 Scanner, 163
 Enclosure, 164
 User Interface, 164
 Performance, 164
References, 165

12 TOKENS: SOMETHING YOU HAVE 167

Overview, 167
Radio-Frequency IDs, 168
 Passive RFID, 168
 Active RFIDs, 170
 RFID Attack Vectors, 171
 RF Sniffing, 171
Smart Cards, 173
 Smart-Card Attack Vectors, 175
Interactive Tokens, 177
 Synchronization, 178
 Token Attack Vectors, 179
Seed Attacks, 179
Man-in-the-Middle Attacks, 179
References, 179

13 LOCATION TECHNOLOGIES 181
Overview, 181
Location’s Place in Security, 181
Geolocation, 182
 Key Requirements for Proper Operation of Geolocation, 184
 Assisted GPS, 186
Geolocation Attack Vectors, 186
 Jammers, 186
 Attenuation, 187
 Artificial Constellations, 187
 Fraudulent Timing Pulses, 187
 Corruption of Assist and Initial Location Information, 188
 Possible Protection Measures, 188
Wi-Fi Hot-Spot Triangulation, 189
 Wi-Fi Location Attack Vectors, 191
 Jamming, 191
 File Compromise on the Client and Server, 191
 Spoofing, 192
 Inadvertent Confusion, 192
Time of Flight, 192
 TOF Attack Vectors, 193
Short-Range Beacons, 193
RF Power Spectrum, 194
 Power-Spectrum Attack Vectors, 194
RF Signatures, 195
 RF Signature Attack Vectors, 195
IP Address and Clock Skew, 196
 Clock-Skew Attack Vectors, 197
References, 197

14 PUTTING IT ALL TOGETHER 199

Overview, 199
The Checklist, 200
Common Elements, 201
 Cryptographic Algorithm, 201
 Symmetric vs. Asymmetric Cryptography, 201
 Decisions Required, 202
 Key Generation, 202
 Decisions Required, 203
 Hash Algorithm for Digital Signatures, 203
 Decisions Required, 203
Specific Elements, 203
 Cryptographic Coprocessor, 204
 Decisions Required, 204
 Secure Bootstrap, 204
 Decisions Required, 204
 TPM, 205
 Decisions Required, 206
 Secure Memory Management, 206
 Decisions Required, 206
 TET, 206
 Decisions Required, 207