Wireless Positioning Technologies and Applications

Alan Bensky
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xiii</th>
</tr>
</thead>
</table>

CHAPTER 1

Introduction

1.1 Fundamentals and Terms

1.1.1 Basic Measurements
1.1.2 Terms

1.2 Applications

1.2.1 Cellular Networks
1.2.2 Person and Asset Tracking
1.2.3 Wireless Network Security
1.2.4 Location-Based Advertising
1.2.5 Location Services for Vehicles and Traffic

1.3 Overview of Distance Measurement and Location Methods

1.4 Organization of the Book
References

CHAPTER 2

Basic Principles and Applications

2.1 Signal Parameters

2.1.1 Time Resolution
2.1.2 Pulse Width and Duty Cycle
2.1.3 Bandwidth
2.1.4 Noise
2.1.5 Pulse Compression

2.2 Basics of Location

2.2.1 Rho-Theta
2.2.2 Theta-Theta or AOA
2.2.3 Rho-Rho or TOA
2.2.4 TDOA and Hyperbolic Curves

2.3 Navigation Systems

2.3.1 DME
2.3.2 VOR
2.3.3 Loran-C
2.3.4 GPS

2.4 Conclusions
References

vii
CHAPTER 3
Spread Spectrum

3.1 Principles of Direct Sequence Spread Spectrum
 3.1.1 Transmitter and Receiver Configurations for DSSS
 3.1.2 DSSS Waveforms
 3.1.3 Despreading and Correlation
 3.1.4 Code Sequence Generation
 3.1.5 Synchronization
 3.1.6 Velocity Estimation

3.2 Acquisition
 3.2.1 Code Acquisition
 3.2.2 Carrier Acquisition
 3.2.3 Code Rate Matching
 3.2.4 Effect of Data Modulation on Acquisition
 3.2.5 Radiometrie Detection

3.3 Tracking
 3.3.1 Carrier Tracking
 3.3.2 Code Tracking

3.4 Measurement of Elapsed Time
 3.4.1 One-Way Systems
 3.4.2 Two-Way Systems
 3.4.3 The Time Measurement Process
 3.4.4 High-Resolution Elapsed Time-Measuring Receiver
 3.4.5 Duplex and Half Duplex Two-Way Ranging Examples
 3.4.6 Sequence Length and Chip Period

3.5 Propagation Time Resolution
 3.5.1 Tracking Accuracy and Noise
 3.5.2 Multipath
 3.5.3 Increased Range Resolution Using Carrier Phase

3.6 Conclusions

References

CHAPTER 4
Time Transfer

4.1 Time Transfer Basics
4.2 Calibration Constants
4.3 Range Uncertainty
 4.3.1 Clock Drift and Measurement Time
 4.3.2 Noise
 4.3.3 Multipath
 4.3.4 Relative Motion
4.4 Ranging Procedure in Wireless Network
4.5 Conclusions

References
CHAPTER 5
Multicarrier Phase Measurement 107

5.1 Principle of Multicarrier Phase Measurement 107
5.2 Phase Slope Method 108
5.3 Phase Error Versus Signal-to-Noise Ratio 111
5.4 Estimation of Distance Variance Versus SNR 115
5.5 Multipath 118
5.6 System Implementation 123
 5.6.1 Phase Difference Measurements and Analogy to TDOA 125
5.7 OFDM 126
 5.7.1 The Basics of OFDM 126
 5.7.2 OFDM Distance Measurement 130
 5.7.3 Location Based on OFDM Distance Measurement 134
 5.7.4 Resolution of OFDM Distance Measurement 136
5.8 Conclusions 137
References 138

CHAPTER 6
Received Signal Strength 139

6.1 Advantages and Problems in RSS Location 139
6.2 Propagation Laws 140
 6.2.1 Free Space 140
 6.2.2 Free-Space dB 140
 6.2.3 Open Field 141
 6.2.4 Logarithmic Approximation 142
 6.2.5 Randomizing Term X 143
 6.2.6 Outdoor Area Networks 144
 6.2.7 Path Loss and Received Signal Strength 146
6.3 RSS Location Methods 146
 6.3.1 RSS Location from Range Estimations 146
 6.3.2 RSS Location Based on Database Comparison 147
6.4 Conclusions 158
References 158

CHAPTER 7
Time of Arrival and Time Difference of Arrival 161

7.1 TOA Location Method 162
 7.1.1 Overdetermined TOA Equation Solution 163
 7.1.2 TOA Method in GPS Positioning 166
7.2 TDOA 170
 7.2.1 TDOA Measurement Techniques 171
 7.2.2 Multilateral and Unilateral Topologies for TDOA 173
 7.2.3 TDOA Geometric Model 175
 7.2.4 TDOA Example 177
7.3 Performance Impairment
 7.3.1 Uncertainties in Data Measurement 181
 7.3.2 Random Noise 182
 7.3.3 Dilution of Precision (DOP) 182
 7.3.4 Multipath 184
 7.3.5 Cochannel Interference 186
7.4 Conclusions 186
References 187

CHAPTER 8
Angle of Arrival 189
8.1 Triangulation 189
8.2 Antenna Performance Terms and Definitions 191
8.3 Finding Direction from Antenna Patterns 194
8.4 Direction-Finding Methods 198
 8.4.1 Amplitude Comparison 198
 8.4.2 Phase Interferometer 200
8.5 Electronically Steerable Beam Antennas 207
8.6 ESPAR Antenna Array 214
8.7 Conclusions 220
References 221

CHAPTER 9
Cellular Networks 223
9.1 Cellular Location-Based Services 223
9.2 Cellular Network Fundamentals 224
 9.2.1 GSM Transmissions 226
 9.2.2 CDMA 227
 9.2.3 UMTS 228
9.3 Categories of Location Systems 229
9.4 GPS Solution 230
9.5 Cell-ID 231
9.6 Location Technologies Using TDOA 232
 9.6.1 Enhanced Observed Time Differences 234
 9.6.2 Observed Time Difference of Arrival 235
 9.6.3 Uplink Time Difference of Arrival 236
9.7 Angle of Arrival 236
9.8 Received Signal Strength and Pattern Recognition 236
9.9 Problems and Solutions in Cellular Network Positioning 237
 9.9.1 Narrowband Networks 237
 9.9.2 CDMA 237
 9.9.3 GSM 238
9.10 Handset-Based Versus Network-Based Systems 238
9.11 Accuracy Factors 239
9.12 Conclusions 239
References 240
CHAPTER 10
Short-Range Wireless Networks and RFID

10.1 WLAN/WiFi
 10.1.1 TOA
 10.1.2 TDOA Methods for WLAN Location
 10.1.3 Fingerprinting

10.2 WPAN
 10.2.1 Bluetooth
 10.2.2 ZigBee
 10.2.3 Alternate Low Rate WPAN Physical Layer IEEE 802.15.4a
 10.2.4 ECMA-368 Standard

10.3 RFID
 10.3.1 Proximity Location
 10.3.2 Distance Bounding for Security
 10.3.3 Accurate RFID Location

10.4 Conclusions
 References

CHAPTER 11
Ultrawideband (UWB)

11.1 Telecommunication Authority Regulations
 11.1.1 FCC Regulations
 11.1.2 UWB in the European Community

11.2 UWB Implementation
 11.2.1 Impulse Radio UWB
 11.2.2 OFDM

11.3 IEEE 802.15.4a
 11.3.1 Physical Layer Characteristics and Synchronization
 11.3.2 Ranging Protocol

11.4 Dealing with Multipath and Nonline of Sight
 11.4.1 Multipath
 11.4.2 Nonline of Sight

11.5 Conclusions
 References

Bibliography

List of Acronyms and Abbreviations

About the Author

Index