Advances in
Organic Light-Emitting Devices

Youngkyoo Kim
Blackett Laboratory, Department of Physics,
Imperial College London, London SW7 2BW, United Kingdom
and Department of Chemical Engineering,
Kyungpook National University, Daegu, 702-701, Korea

and

Chang-Sik Ha
Department of Polymer Science and Engineering,
Pusan National University, Busan 609-735, Korea

TRANS TECH PUBLICATIONS LTD
Switzerland • UK • USA
Table of Contents

1. History of the OLED ... 1

2. Introduction to OLEDs .. 7

 2.1 Classification of OLEDs .. 7
 2.2 OLED Using Small Organic Molecules ... 7
 2.3 PLED Using Emissive Polymers .. 9
 2.4 Hybrid OLED .. 11
 2.5 Kinds of Devices According to Function and Structure .. 13

3. The Physics behind OLEDs ... 21

 3.1 Basic Mechanism ... 21
 3.2 Charge Carrier Injection and Transport ... 22
 3.2.1 Charge Injection Mechanisms ... 25
 3.2.1a Thermionic Emission Mechanisms .. 25
 3.2.1b Tunneling Injection Mechanisms ... 28
 3.2.2 Charge Transport Mechanisms ... 29
 3.2.2a Ohmic Transport Regime \((m=0)\) ... 30
 3.2.2b Space-Charge Limited Transport Regime \((m=1)\) ... 31
 3.2.2c Trap-Charge Limited Transport Regime \((m > 1)\) ... 32
 3.2.2d Trap-filled Space Charge Limited Transport Regime \((m = 1)\) ... 33
 3.2.3 Case Studies for Charge Injection and Transport Characteristics 33
 3.2.3a Charge Injection Studies .. 33
 3.2.3b Charge Transport Studies .. 36

 3.3 Delayed EL Owing to Low Charge Carrier Mobility ... 40

 3.4 Generation of Singlet and Triplet Excitons in OLEDs ... 41
 3.4.1 Exciton Generation by Optical Excitation .. 41
 3.4.2 Exciton Generation by Charge Injection ... 43

 3.5 Efficiency of OLEDs .. 44
 3.5.1 Photoluminescence Quantum Efficiency in Films ... 44
 3.5.2 Electroluminescence Quantum Efficiency in OLEDs .. 46
 3.5.3 Luminous and Energy Efficiencies in OLEDs .. 48

 3.6 Exciton Energy Transfer from Donor (Host) to Acceptor (Guest) ... 49
 3.6.1 Förster Energy Transfer ... 50
 3.6.2 Dexter Energy Transfer ... 51
3.6.3 Examples of High Efficiency Devices using a Doped Layer

4. Organic Materials (Small Molecules) for OLEDs

4.1 Hole-injecting Materials
4.2 Hole-transporting Materials
4.3 Light-emitting Materials (Organic Light-Emitters)
 4.3.1 Green Light-emitting Materials
 4.3.2 Blue Light-emitting Materials
 4.3.3 Red Light-emitting Materials
4.4 Hole-blocking Materials
4.5 Electron-transporting Materials
4.6 Electron-injecting Materials
4.7 Electrodes

5. Polymeric Materials for PLEDs

5.1 Polymers for Buffer Layer
5.2 Light-emitting Polymers
 5.2.1 Green LEPs
 5.2.2 Blue LEPs
 5.2.3 Red LEPs
5.3 Hole-blocking/Electron-transporting/Electron-injecting Polymers
5.4 Electrode Materials

6. Materials for Hybrid OLEDs

6.1 Materials for All-organic HOLEDs
 6.1.1 Main Chain Polymers for HIL or HTL
 6.1.2 Side Chain Polymers for HIL or HTL
 6.1.3 Molecularly-Doped Polymers for HIL and HTL
6.2 Materials for Organic-Inorganic HOLEDs

7. Reliability and Lifetime

7.1 Moisture Effect
7.2 Oxygen Effect
7.3 Impurity Effect
7.4 Progressive Electrical Short
7.5 Solvent and Polymer Side-Chain Effects in PLEDs
7.6 Intrinsic Material Stability and Luminance Decay Mechanism

8. OLED Displays

8.1 Passive Matrix-Organic Light-emitting Display (PM-OLED)