Contents

CHAPTER 1
INTRODUCTION /1
1-1 Note to Students /2
1-2 Scope of Fluid Mechanics /3
1-3 Definition of a Fluid /3
1-4 Basic Equations /4
1-5 Methods of Analysis /5
 System and Control Volume /5
 Differential versus Integral Approach /7
 Methods of Description /8
1-6 Dimensions and Units /9
 Systems of Dimensions /10
 Systems of Units /10
 Preferred Systems of Units /12
 Dimensional Consistency and “Engineering” Equations /13
1-7 Analysis of Experimental Error /14
1-8 Summary /15
 Reference /15
 Problems /15

CHAPTER 2
FUNDAMENTAL CONCEPTS /19
2-1 Fluid as a Continuum /20
2-2 Velocity Field /22
 One-, Two-, and Three-Dimensional Flows /22
 Timelines, Pathlines, Streaklines, and Streamlines /23
2-3 Stress Field /27
2-4 Viscosity /30
 Newtonian Fluid /31
 Non-Newtonian Fluids /33
2-5 Surface Tension /34
2-6 Description and Classification of Fluid Motions /37
 Viscous and Inviscid Flows /38
 Laminar and Turbulent Flows /40
 Compressible and Incompressible Flows /41
 Internal and External Flows /42
2-7 Summary and Useful Equations /43
 References /44
 Problems /44

CHAPTER 3
FLUID STATICS /52
3-1 The Basic Equation of Fluid Statics /53
3-2 The Standard Atmosphere /56
3-3 Pressure Variation in a Static Fluid /56
 Incompressible Liquids: Manometers /57
 Gases /63
3-4 Hydraulic Systems /65
3-5 Hydrostatic Force on Submerged Surfaces /65
 Hydrostatic Force on a Plane Submerged Surface /66
 Hydrostatic Force on a Curved Submerged Surface /73
*3-6 Buoyancy and Stability /76

An asterisk appearing in front of a section title indicates that the section can be omitted without loss of continuity in the text material.
CHAPTER 4
BASIC EQUATIONS IN INTEGRAL FORM
FOR A CONTROL VOLUME
4-1 Basic Laws for a System
Conservation of Mass
Newton’s Second Law
The Angular-Momentum Principle
The First Law of Thermodynamics
The Second Law of Thermodynamics
4-2 Relation of System Derivatives to the Control Volume Formulation
Derivation
Physical Interpretation
4-3 Conservation of Mass
Special Cases
4-4 Momentum Equation for Inertial Control Volume
*Differential Control Volume Analysis
Control Volume Moving with Constant Velocity
4-5 Momentum Equation for Control Volume with Rectilinear Acceleration
4-6 Momentum Equation for Control Volume with Arbitrary Acceleration (on the Web)
4-7 The Angular-Momentum Principle
Equation for Fixed Control Volume
4-8 The First Law of Thermodynamics
Rate of Work Done by a Control Volume
Control Volume Equation
4-9 The Second Law of Thermodynamics
4-10 Summary and Useful Equations
Problems

CHAPTER 5
INTRODUCTION TO DIFFERENTIAL
ANALYSIS OF FLUID MOTION
5-1 Conservation of Mass
Rectangular Coordinate System
Cylindrical Coordinate System
5-2 Stream Function for Two-Dimensional Incompressible Flow
5-3 Motion of a Fluid Particle (Kinematics)
Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field
Fluid Rotation
Fluid Deformation
5-4 Momentum Equation
Forces Acting on a Fluid Particle
Differential Momentum Equation
Newtonian Fluid: Navier–Stokes Equations
5-5 Introduction to Computational Fluid Dynamics
The Need for CFD
Applications of CFD
The Strategy of CFD
Discretization Using the Finite-Difference Method
Assembly of Discrete System and Application of Boundary Conditions
Solution of Discrete System
Grid Convergence
Dealing with Nonlinearity
Direct and Iterative Solvers
Iterative Convergence
Concluding Remarks
CHAPTER 6
INCOMPRESSIBLE INVISCID FLOW /215
6-1 Momentum Equation for Frictionless Flow: Euler’s Equation /216
6-2 Euler’s Equations in Streamline Coordinates /217
6-3 Bernoulli Equation—Integration of Euler’s Equation Along a Streamline for Steady Flow /220
 Derivation Using Streamline Coordinates /220
 *Derivation Using Rectangular Coordinates /221
 Static, Stagnation, and Dynamic Pressures /223
 Applications /226
 Cautions on Use of the Bernoulli Equation /231
6-4 The Bernoulli Equation Interpreted as an Energy Equation /232
6-5 Energy Grade Line and Hydraulic Grade Line /236
 6-6 Unsteady Bernoulli Equation—Integration of Euler’s Equation along a Streamline (on the Web) /W-16
 *6-7 Irrotational Flow /238
 Bernoulli Equation Applied to Irrotational Flow /239
 Velocity Potential /240
 Stream Function and Velocity Potential for Two-Dimensional, Irrotational, Incompressible Flow: Laplace’s Equation /241
 Elementary Plane Flows /244
 Superposition of Elementary Plane Flows /246
6-8 Summary and Useful Equations /255
 References /258
 Problems /258

CHAPTER 7
DIMENSIONAL ANALYSIS AND SIMILITUDE /268
7-1 Nondimensionalizing the Basic Differential Equations /269
7-2 Nature of Dimensional Analysis /271
7-3 Buckingham Pi Theorem /273
7-4 Determining the Pi Groups /273
7-5 Significant Dimensionless Groups in Fluid Mechanics /279
7-6 Flow Similarity and Model Studies /281
 Incomplete Similarity /284
 Scaling with Multiple Dependent Parameters /289
 Comments on Model Testing /293
7-7 Summary and Useful Equations /293
 References /294
 Problems /295

CHAPTER 8
INTERNAL INCOMPRESSIBLE VISCOUS FLOW /302
8-1 Introduction /303
 Laminar versus Turbulent Flow /303
 The Entrance Region /304
PART A. FULLY DEVELOPED LAMINAR FLOW /305
8-2 Fully Developed Laminar Flow between Infinite Parallel Plates /305
 Both Plates Stationary /305
 Upper Plate Moving with Constant Speed, U /311
8-3 Fully Developed Laminar Flow in a Pipe /316
PART B. FLOW IN PIPES AND DUCTS /320
8-4 Shear Stress Distribution in Fully Developed Pipe Flow /321
8-5 Turbulent Velocity Profiles in Fully Developed Pipe Flow /323
8-6 Energy Considerations in Pipe Flow /326
 Kinetic Energy Coefficient /327
 Head Loss /327
8-7 Calculation of Head Loss /328
 Major Losses: Friction Factor /329
 Minor Losses /333
Pumps, Fans, and Blowers in Fluid Systems /338
Noncircular Ducts /339
8-8 Solution of Pipe Flow Problems /340
Single-Path Systems /341
*Multiple-Path Systems /354
PART C. FLOW MEASUREMENT /358
8-9 Direct Methods /358
8-10 Restriction Flow Meters for Internal Flows /358
The Orifice Plate /362
The Flow Nozzle /362
The Venturi /364
The Laminar Flow Element /365
8-11 Linear Flow Meters /368
8-12 Traversing Methods /370
8-13 Summary and Useful Equations /371
References /373
Problems /374

CHAPTER 9 EXTERNAL INCOMPRESSIBLE VISCOUS FLOW /389
PART A. BOUNDARY LAYERS /391
9-1 The Boundary-Layer Concept /391
9-2 Boundary-Layer Thicknesses /392
*9-3 Laminar Flat-Plate Boundary Layer: Exact Solution (on the Web) /W-19
9-4 Momentum Integral Equation /395
9-5 Use of the Momentum Integral Equation for Flow with Zero Pressure Gradient /400
Laminar Flow /401
Turbulent Flow /405
Summary of Results for Boundary-Layer Flow with Zero Pressure Gradient /408
9-6 Pressure Gradients in Boundary-Layer Flow /408
PART B. FLUID FLOW ABOUT IMMERSED BODIES /411
9-7 Drag /412
Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow /413
Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow /416
Friction and Pressure Drag: Flow over a Sphere and Cylinder /416
Streamlining /423
9-8 Lift /425
9-9 Summary and Useful Equations /441
References /443
Problems /444

CHAPTER 10 FLUID MACHINERY /457
10-1 Introduction and Classification of Fluid Machines /458
Machines for Doing Work on a Fluid /459
Machines for Extracting Work (Power) from a Fluid /460
10-2 Scope of Coverage /461
10-3 Turbomachinery Analysis /461
The Angular-Momentum Principle /462
Euler Turbomachine Equation /462
Velocity Diagrams /463
Hydraulic Power /471
Machines for Doing Work on a Fluid /471
Machines for Extracting Work (Power) from a Fluid /472
10-4 Performance Characteristics /472
Performance Parameters /472
Machines for Doing Work on a Fluid /473
Machines for Extracting Work (Power) from a Fluid /478
Dimensional Analysis and Specific Speed /483
Similarity Rules /488
Cavitation and Net Positive Suction Head /492
10-5 Applications to Fluid Systems /496
Machines for Doing Work on a Fluid /496
Machines for Extracting Work (Power) from a Fluid /525
10-6 Summary and Useful Equations /534
References /536
Problems /537

CHAPTER 11 OPEN-CHANNEL FLOW /546
11-1 Steady Uniform Flow /547
Energy /548
Momentum /548
11-2 Specific Energy, Momentum Equation, and Specific Force /553
Specific Energy /553
Momentum Equation for Varying Flow /560
Specific Force /562
11-3 Steady, Gradually Varied Flow /565
11-4 Rapidly Varied Flow /568
11-5 Discharge Measurement Using Weirs /572
Suppressed Rectangular Weirs /573
Contracted Rectangular Weir /574
Triangular Weir /574
Broad-Crested Weir /576
11-6 Summary and Useful Equations /576
References /578
Problems /578

CHAPTER 12 INTRODUCTION TO COMPRESSIBLE FLOW /581
12-1 Review of Thermodynamics /582
12-2 Propagation of Sound Waves /588
Speed of Sound /588
Types of Flow—The Mach Cone /592
12-3 Reference State: Local Isentropic Stagnation Properties /595
Local Isentropic Stagnation Properties for the Flow of an Ideal Gas /596
12-4 Critical Conditions /602
12-5 Summary and Useful Equations /603
References /604
Problems /605

CHAPTER 13 COMPRESSIBLE FLOW /609
13-1 Basic Equations for One-Dimensional Compressible Flow /610
13-2 Isentropic Flow of an Ideal Gas—Area Variation /613
Subsonic Flow, M < 1 /616
Supersonic Flow, M > 1 /616
Sonic Flow, M = 1 /617
Reference Stagnation and Critical Conditions for Isentropic Flow of an Ideal Gas /618
Isentropic Flow in a Converging Nozzle /623
Isentropic Flow in a Converging-Diverging Nozzle /628
13-3 Flow in a Constant-Area Duct with Friction /634
Basic Equations for Adiabatic Flow /634
Adiabatic Flow: The Fanno Line /635
Fanno-Line Flow Functions for One-Dimensional Flow of an Ideal Gas /639
• Isothermal Flow (on the Web) /W-24
13-4 Frictionless Flow in a Constant-Area Duct with Heat Exchange /646
Basic Equations for Flow with Heat Exchange /647
The Rayleigh Line /648
Rayleigh-Line Flow Functions for One-Dimensional Flow of an Ideal Gas /652
13-5 Normal Shocks /656
Basic Equations for a Normal Shock /657
Normal Shock Flow Functions for One-Dimensional Flow of an Ideal Gas /660

13-6 Supersonic Channel Flow with Shocks /665
Flow in a Converging-Diverging Nozzle /665
• Supersonic Diffuser (on the Web) /W-26
• Supersonic Wind Tunnel Operation (on the Web) /W-27
• Supersonic Flow with Friction in a Constant-Area Channel (on the Web) /W-28
• Supersonic Flow with Heat Addition in a Constant-Area Channel (on the Web) /W-30

13-7 Oblique Shocks and Expansion Waves /667
Oblique Shocks /667
Isentropic Expansion Waves /676

13-8 Summary and Useful Equations /683
References /687
Problems /687

APPENDIX A FLUID PROPERTY DATA /698
APPENDIX B EQUATIONS OF MOTION IN CYLINDRICAL COORDINATES /710
APPENDIX C VIDEOS FOR FLUID MECHANICS /711
APPENDIX D SELECTED PERFORMANCE CURVES FOR PUMPS AND FANS /714
APPENDIX E FLOW FUNCTIONS FOR COMPUTATION OF COMPRESSIBLE FLOW /727
APPENDIX F ANALYSIS OF EXPERIMENTAL UNCERTAINTY /738
APPENDIX G SI UNITS, PREFIXES, AND CONVERSION FACTORS /745
APPENDIX H A BRIEF REVIEW OF MICROSOFT EXCEL (ON THE WEB) /W-33

Answers to Selected Problems (on the Web)
Index /747