Modeling the Wireless Propagation Channel
A Simulation Approach with MATLAB®

F. Pérez Fontán and P. Mariño Espiñeira

University of Vigo, Spain
Contents

About the Series Editors xi

Preface xiii

Acknowledgments xvii

1 Introduction to Wireless Propagation 1
 1.1 Introduction 1
 1.2 Wireless Propagation Basics 4
 1.3 Link Budgets 9
 1.4 Projects
 Project 1.1: Fast Fading Series 12
 Project 1.2: Shadowing Plus Multipath 19
 Project 1.3: Complex Envelope Series 23
 1.5 Summary 26
 References 26
 Software Supplied 27

2 Shadowing Effects 29
 2.1 Introduction 29
 2.2 Projects
 Project 2.1: Knife-Edge Diffraction Calculations by Means of Numerical Integration 39
 Project 2.2: Knife-Edge Diffraction Calculations Using Functions C and S 41
 Project 2.3: Simple Building Shadowing Model 42
 Project 2.4: Simple Street Model. Correlated Shadowing Series 46
 Project 2.5: Terrain Effects. Four-Ray Model 48
 Project 2.6: Other Screen Shadowing Scenarios 51
 Project 2.7: Terrain Effects. Edwards and Durkin Method 54
 2.3 Summary 59
 References 59
 Software Supplied 60
3 Coverage and Interference 61
 3.1 Introduction 61
 3.2 Hata Model 65
 3.3 Projects 66
 Project 3.1: Generating Realistic Series with Path Loss and Shadowing 66
 Project 3.2: Generating Partially Cross-Correlated Shadowing Series 71
 Project 3.3: Area Coverage 75
 Project 3.4: Multiple Interference 78
 3.4 Summary 81
 References 82
 Software Supplied 82

4 Introduction to Multipath 83
 4.1 Introduction 83
 4.2 Projects 84
 Project 4.1: Direct Signal, Angle of Arrival and Doppler Shift 84
 Project 4.2: Direct and Reflected Signals 91
 Project 4.3: Two Scatterers 94
 Project 4.4: Multiple Scatterers 97
 Project 4.5: Standing Wave due to Multipath 99
 Project 4.6: Quasi-standing Wave 100
 Project 4.7: Link Between Moving Terminals 102
 4.3 Summary 103
 References 103
 Software Supplied 104

5 Multipath: Narrowband Channel 105
 5.1 Introduction 105
 5.2 Projects 105
 Project 5.1: The Clarke Model 106
 Project 5.2: The Rice Channel 117
 Project 5.3: Rayleigh Channel Simulator using Sinusoidal Generators 119
 Project 5.4: Simulator using Two Filtered Gaussians in Quadrature. Butterworth Response 123
 Project 5.5: Diversity and Combining at the Mobile Station 129
 Project 5.6: Diversity and Combining at the Base Station 131
 5.3 Summary 135
 References 135
 Software Supplied 135

6 Shadowing and Multipath 137
 6.1 Introduction 137
 6.2 Projects 137
 Project 6.1: The Suzuki Model 137
 Project 6.2: Power Control 142
7 Multipath: Wideband Channel 153
7.1 Introduction 153
7.2 Deterministic Multiple Point-Scatterer Model 155
7.3 Channel System Functions 157
7.4 Stochastic Description of the Wireless Channel 160
7.5 Projects
 Project 7.1: Time-Varying Frequency Response 165
 Project 7.2: Ideal Channel in the Time-Delay Domain and Channel Sounding 172
 Project 7.3: The Scattering Function 176
 Project 7.4: Tapped Delay-Line Models – COST 207 179
7.6 Summary 184
References 184
Software Supplied 185

8 Propagation in Microcells and Picocells 187
8.1 Introduction 187
8.2 Review of Some Propagation Basics 187
8.3 Microcell and Picocell Empirical Models 195
8.4 Projects
 Project 8.1: The Two-Ray Model 197
 Project 8.2: Street Canyon Propagation 202
 Project 8.3: Side Street Scenario 204
 Project 8.4: Wideband Indoor Propagation – The Saleh-Valenzuela Model 205
 Project 8.5: Building Penetration Through Windows 209
8.5 Summary 211
References 211
Software Supplied 212

9 The Land Mobile Satellite Channel 213
9.1 Introduction 213
9.2 Projects
 Project 9.1: Two-State Markov Model 214
 Project 9.2: Coverage Using Constellations of Satellites 219
 Project 9.3: LMS Propagation in Virtual Cities 221
 Project 9.4: Doppler Shift 224
9.3 Summary 226
References 226
Software Supplied 227
10 The Directional Wireless Channel

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>229</td>
</tr>
<tr>
<td>10.2 MIMO Systems</td>
<td>229</td>
</tr>
<tr>
<td>10.3 Projects</td>
<td>236</td>
</tr>
<tr>
<td>Project 10.1: Generating Clustered Point-Scatterer Propagation Scenarios</td>
<td>236</td>
</tr>
<tr>
<td>Project 10.2: MIMO Channel Modeling Using the Multiple Point Scatterers</td>
<td>240</td>
</tr>
<tr>
<td>Project 10.3: Statistical Modeling of the MIMO Channel</td>
<td>244</td>
</tr>
<tr>
<td>10.4 Summary</td>
<td>247</td>
</tr>
<tr>
<td>References</td>
<td>247</td>
</tr>
<tr>
<td>Software Supplied</td>
<td>248</td>
</tr>
</tbody>
</table>

Index

249