Analysis of Electromagnetic Fields and Waves

The Method of Lines

Reinhold Pregla
FernUniversität

with the assistance of
Stefan Helfert

John Wiley & Sons, Ltd
Research Studies Press Limited
Contents

Preface xiii

1 THE METHOD OF LINES 1
 1.1 INTRODUCTION .. 1
 1.2 MOL: FUNDAMENTALS OF DISCRETISATION 5
 1.2.1 Qualitative description 5
 1.2.2 Quantitative description of the discretisation ... 7
 1.2.3 Numerical example 11

2 BASIC PRINCIPLES OF THE METHOD OF LINES 15
 2.1 INTRODUCTION .. 15
 2.2 BASIC EQUATIONS 16
 2.2.1 Anisotropic material parameters 16
 2.2.2 Relations between transversal electric and magnetic
 fields – generalised transmission line (GTL) equations . 19
 2.2.3 Relation to the analysis with vector potentials .. 21
 2.2.4 GTL equations for 2D structures 22
 2.2.5 Solution of the GTL equations 23
 2.2.6 Numerical examples 25
 2.3 EIGENMODES IN PLANAR WAVEGUIDE STRUCTURES
 WITH ANISOTROPIC LAYERS 26
 2.3.1 Introduction 26
 2.3.2 Analysis equations for eigenmodes in planar structures ... 30
 2.3.3 Examples of system equations 33
 2.3.4 Impedance/admittance transformation in multilayered
 structures ... 35
 2.3.5 System equation in transformed domain 36
 2.3.6 System equation in spatial domain 38
 2.3.7 Matrix partition technique: two examples 40
 2.3.8 Numerical results 43
 2.4 ANALYSIS OF PLANAR CIRCUITS 45
 2.4.1 Discretisation of the transmission line equations . 45
 2.4.2 Determination of the field components 52
2.5 FIELD AND IMPEDANCE/ADMITTANCE TRANSFORMATION 52
 2.5.1 Introduction ... 52
 2.5.2 Impedance/admittance transformation in multilayered and multisectioned structures 53
 2.5.3 Impedance/admittance transformation with finite differences ... 61
 2.5.4 Stable field transformation through layers and sections .. 66

3 ANALYSIS OF RECTANGULAR WAVEGUIDE CIRCUITS ... 73
 3.1 INTRODUCTION .. 73
 3.2 CONCATENATIONS OF WAVEGUIDE SECTIONS 75
 3.2.1 LSM and LSE modes in circular waveguide bends 76
 3.2.2 LSM and LSE modes in straight waveguides ... 80
 3.2.3 Impedance transformation at waveguide interfaces 82
 3.2.4 Numerical results for concatenations .. 84
 3.2.5 Numerical results for waveguide filters ... 87
 3.3 WAVEGUIDE JUNCTIONS .. 90
 3.3.1 E-plane junctions ... 93
 3.3.2 H-plane junctions ... 96
 3.3.3 Algorithm for generalised scattering parameters 98
 3.3.4 Special junctions: E-plane 3-port junction .. 99
 3.3.5 Matched E-plane bend ... 100
 3.3.6 Analysis of waveguide bend discontinuities 103
 3.3.7 Scattering parameters ... 110
 3.3.8 Numerical results ... 110
 3.4 ANALYSIS OF 3D WAVEGUIDE JUNCTIONS .. 115
 3.4.1 General description ... 116
 3.4.2 Basic equations .. 117
 3.4.3 Discretisation scheme for propagation between A and B 118
 3.4.4 Discontinuities .. 121
 3.4.5 Coupling to other ports .. 122
 3.4.6 Impedance/admittance transformation ... 125
 3.4.7 Numerical results ... 126

4 ANALYSIS OF WAVEGUIDE STRUCTURES IN CYLINDRICAL COORDINATES 131
 4.1 INTRODUCTION .. 131
 4.2 GENERALISED TRANSMISSION LINE (GTL) EQUATIONS 132
 4.2.1 Material parameters in a cylindrical coordinate system 132
 4.2.2 GTL equations for z-direction ... 133
 4.2.3 GTL equations for \(\phi \)-direction ... 137
4.2.4 Analysis of circular (coaxial) waveguides with azimuthally-magnetised ferrites and azimuthally-magnetised solid plasma 140
4.2.5 GTL equations for r-direction 144
4.3 DISCRETISATION OF THE FIELDS AND SOLUTIONS 150
 4.3.1 Equations for propagation in z-direction 150
 4.3.2 Equations for propagation in \(\phi \)-direction 153
 4.3.3 Solution of the wave equations in z- and \(\phi \)-direction 155
 4.3.4 Equations for propagation in r-direction 155
4.4 SOLUTION IN RADIAL DIRECTION 155
 4.4.1 Discretisation in z-direction – circular dielectric resonators 155
 4.4.2 Discretisation in z-direction – propagation in \(\phi \)-direction 162
 4.4.3 Discretisation in \(\phi \)-direction – eigenmodes in circular multilayered waveguides 171
 4.4.4 Eigenmodes of circular waveguides with magnetised ferrite or plasma – discretisation in r-direction 186
 4.4.5 Waveguide bends – discretisation in r-direction 202
 4.4.6 Uniaxial anisotropic fibres with circular and noncircular cross-section – discretisation in \(\phi \)-direction 208
4.5 DISCONTINUITIES IN CIRCULAR WAVEGUIDES – ONE-DIMENSIONAL DISCRETISATION IN RADIAL DIRECTION 216
 4.5.1 Introduction ... 216
 4.5.2 Basic equations for rotational symmetry 217
 4.5.3 Solution of the equations for rotational symmetry ... 218
 4.5.4 Admittance and impedance transformation 219
 4.5.5 Open ending circular waveguide 220
 4.5.6 Numerical results for discontinuities in circular waveguides 223
 4.5.7 Numerical results for coaxial line discontinuities and coaxial filter devices 223
 4.5.8 Non-rotational modes in circular waveguides 225
 4.5.9 Numerical results and discussion 228
4.6 ANALYSIS OF GENERAL AXIALLY SYMMETRIC ANTENNAS WITH COAXIAL FEED LINES 229
 4.6.1 Introduction ... 229
 4.6.2 Theory ... 230
 4.6.3 Regions with crossed lines 239
 4.6.4 Two special cases 244
 4.6.5 Port relations of section D 247
 4.6.6 Numerical results 248
 4.6.7 Further structures and remarks 249
4.7 DEVICES IN CYLINDRICAL COORDINATES —
 TWO-DIMENSIONAL DISCRETISATION 250
4.7.1 Discretisation in r- and φ-direction 250
4.7.2 Numerical results 253
4.7.3 Discretisation in r- and z-direction 253
4.7.4 Discretisation in φ- and z-direction 254
4.7.5 GTL equations for r-direction 255

5 ANALYSIS OF PERIODIC STRUCTURES 267
5.1 INTRODUCTION 267
5.2 PRINCIPLE BEHAVIOUR OF PERIODIC STRUCTURES . 269
5.3 GENERAL THEORY OF PERIODIC STRUCTURES 274
 5.3.1 Port relations for general two ports 274
 5.3.2 Floquet modes for symmetric periods 274
 5.3.3 Concatenation of N symmetric periods 280
 5.3.4 Floquet modes for unsymmetric periods 281
 5.3.5 Some further general relations in periodic structures .. 283
5.4 NUMERICAL RESULTS FOR PERIODIC STRUCTURES IN
 ONE DIRECTION 286
5.5 ANALYSIS OF PHOTONIC CRYSTALS 291
 5.5.1 Determination of band diagrams 291
 5.5.2 Waveguide circuits in photonic crystals 297
 5.5.3 Numerical results for photonic crystal circuits .. 299

6 ANALYSIS OF COMPLEX STRUCTURES 311
6.1 LAYERS OF VARIABLE THICKNESS 311
 6.1.1 Introduction 311
 6.1.2 Matching conditions at curved interfaces 312
6.2 MICROSTRIP SHARP BEND 315
6.3 IMPEDANCE TRANSFORMATION AT DISCONTINUITIES 318
 6.3.1 Impedance transformation at concatenated junctions . 318
6.4 ANALYSIS OF PLANAR WAVEGUIDE JUNCTIONS 320
 6.4.1 Main diagonal submatrices 322
 6.4.2 Off-diagonal submatrices – coupling to perpendicular
 ports ... 323
6.5 NUMERICAL RESULTS 327
 6.5.1 Discontinuities in microstrips 328
 6.5.2 Waveguide junctions 333

7 PRECISE RESOLUTION WITH AN ENHANCED AND
 GENERALISED LINE ALGORITHM 345
7.1 INTRODUCTION 345
7.2 CROSSED DISCRETISATION LINES AND CARTESIAN
 COORDINATES 346
 7.2.1 Theoretical background 346
7.2.2 Lines in vertical direction 351
7.2.3 Lines in horizontal direction 357
7.3 SPECIAL STRUCTURES IN CARTESIAN COORDINATES 361
 7.3.1 Groove guide ... 361
 7.3.2 Coplanar waveguide 363
7.4 CROSSED DISCRETISATION LINES AND CYLINDRICAL
 COORDINATES .. 366
 7.4.1 Principle of analysis 366
 7.4.2 General formulas for eigenmode calculation 366
 7.4.3 Discretisation lines in radial direction 367
 7.4.4 Discretisation lines in azimuthal direction 368
 7.4.5 Coupling to neighbouring ports 369
 7.4.6 Steps of the analysis procedure 373
7.5 NUMERICAL RESULTS ... 373

8 WAVEGUIDE STRUCTURES WITH MATERIALS OF
 GENERAL ANISOTROPY IN ARBITRARY
 ORTHOGONAL COORDINATE SYSTEMS 377
 8.1 GENERALISED TRANSMISSION LINE EQUATIONS 377
 8.1.1 Material properties 377
 8.1.2 Maxwell's equations in matrix notation 377
 8.1.3 Generalised transmission line equations in Cartesian
 coordinates for general anisotropic material 379
 8.1.4 Generalised transmission line equations for general
 anisotropic material in arbitrary orthogonal coordinates 381
 8.1.5 Boundary conditions 383
 8.1.6 Interpolation matrices 384
 8.2 DISCRETISATION .. 385
 8.2.1 Two-dimensional discretisation 385
 8.2.2 One-dimensional discretisation 386
 8.3 SOLUTION OF THE DIFFERENTIAL EQUATIONS 388
 8.3.1 General solution 388
 8.3.2 Field relation between interfaces A and B 389
 8.4 ANALYSIS OF WAVEGUIDE JUNCTIONS AND SHARP
 BENDS WITH GENERAL ANISOTROPIC MATERIAL BY
 USING ORTHOGONAL PROPAGATING WAVES 389
 8.4.1 Introduction .. 389
 8.4.2 Theory ... 389
 8.4.3 Main diagonal submatrices 391
 8.4.4 Off-diagonal submatrices - coupling to other ports 393
 8.4.5 Steps of the analysis procedure 398
 8.5 NUMERICAL RESULTS .. 398
 8.6 ANALYSIS OF WAVEGUIDE STRUCTURES IN
 SPHERICAL COORDINATES 399
8.6.1 Introduction 399
8.6.2 Generalised transmission line equations in spherical coordinates 400
8.6.3 Analysis of special devices – conformal antennas 408
8.6.4 Analysis of special devices – conical horn antennas 413
8.6.5 Numerical results 419
8.7 ELLIPTICAL COORDINATES 420
8.7.1 GTL equations for ξ-direction 421
8.7.2 GTL equations for η-direction 422
8.7.3 GTL equations for γ-direction 423
8.7.4 Hollow waveguides with elliptic cross-section 424

9 SUMMARY AND PROSPECT FOR THE FUTURE 429
A DISCRETISATION SCHEMES AND DIFFERENCE OPERATORS 433
A.1 DETERMINATION OF THE EIGENVALUES AND EIGENVECTORS OF P 433
A.1.1 Calculation of the matrices δ 436
A.1.2 Derivation of the eigenvalues of the Neumann problem from those of the Dirichlet problem 438
A.1.3 The component of ε_r at an abrupt transition 439
A.1.4 Eigenvalues and eigenvectors for periodic boundary conditions 441
A.1.5 Discretisation for non-ideal places of the boundaries 442
A.2 ABSORBING BOUNDARY CONDITIONS (ABCs) 444
A.2.1 Introduction 444
A.2.2 Factorisation of the Helmholtz equation 445
A.2.3 Padé approximation 446
A.2.4 Polynomial approximations 447
A.2.5 Construction of the difference operator for ABCs 449
A.2.6 Special boundary conditions (SBCs) 450
A.2.7 Numerical results 450
A.2.8 ABCs for cylindrical coordinates 453
A.2.9 Periodic boundary conditions 455
A.3.1 Introduction 456
A.3.2 Theory 457
A.3.3 Numerical results 459
A.4 NON-EQUIDISTANT DISCRETISATION 460
A.4.1 Introduction 460
A.4.2 Theory 460
A.4.3 Interpolation 464
A.4.4 Numerical results 466
CONTENTS

A.5 REFLECTIONS IN DISCRETISATION GRIDS 468
 A.5.1 Introduction 468
 A.5.2 Dispersion relations 468
 A.5.3 Reflections at discretisation transitions 471
A.6 FIELD EXTRAPOLATION FOR NEUMANN BOUNDARY CONDITIONS 475
A.7 ABOUT THE NATURE OF THE METHOD OF LINES 476
 A.7.1 Introduction 476
 A.7.2 Relation between shielded structures and periodic ones 477
 A.7.3 Method of Lines and discrete Fourier transformation 478
 A.7.4 Discussion 479
A.8 RELATION BETWEEN THE MODE MATCHING METHOD (MMM) AND THE METHOD OF LINES (MoL) FOR INHOMOGENEOUS MEDIA 480
A.9 RECIPROCITY AND ITS CONSEQUENCES 483

B TRANSMISSION LINE EQUATIONS 491
 B.1 TRANSMISSION LINE EQUATIONS IN FIELD VECTOR NOTATION 491
 B.2 DERIVATION OF THE MULTICONDUCTOR TRANSMISSION LINE EQUATIONS 492

C SCATTERING PARAMETERS 497

D EQUIVALENT CIRCUITS FOR DISCONTINUITIES 499

E APPROXIMATE METALLIC LOSS CALCULATION IN CONFORMAL STRUCTURES 501

Index 503