Retargetable Processor System Integration into Multi-Processor System-on-Chip Platforms
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Challenge: From Board to SoC</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Degrees of SoC Customization</td>
<td></td>
</tr>
<tr>
<td>1.2.1 Computation</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Communication</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Organization of this Book</td>
<td>5</td>
</tr>
<tr>
<td>2. SOC DESIGN METHODOLOGIES</td>
<td></td>
</tr>
<tr>
<td>2.1 Traditional HW/SW Co-Design</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 HW/SW Co-Simulation</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Automatic Synthesis</td>
<td>9</td>
</tr>
<tr>
<td>2.2 System Level Design</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Motivation</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Standardization</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3 Design Flows</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Current Research on SoC Design Methodologies</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Bottom-Up SoC Design</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Top-Down SoC Design</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Contribution of this Work</td>
<td>22</td>
</tr>
<tr>
<td>3. COMMUNICATION MODELING</td>
<td></td>
</tr>
<tr>
<td>3.1 Transaction Level Modeling</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1 Use Cases</td>
<td>25</td>
</tr>
<tr>
<td>3.1.2 Abstraction Levels</td>
<td>26</td>
</tr>
</tbody>
</table>
3.2 Generic Communication Modeling
 3.2.1 Architect’s View Framework (AVF)
 3.2.2 Generic TLM Simulation Modules
3.3 Communication Customization
 3.3.1 Communication IP Providers
 3.3.2 Protocol Specific TLM Interfaces
3.4 The BusCompiler Tool
 3.4.1 Cycle Accurate Communication Modeling
 3.4.2 BusCompiler Input Specification
4. PROCESSOR MODELING
 4.1 Generic Processor Modeling
 4.1.1 Native Execution on the Simulation Host
 4.1.2 Generic Assembly Level
 4.2 Processor Customization Techniques
 4.2.1 Selectable Processor Core IP
 4.2.2 (Re-)Configurable Processor Architectures
 4.2.3 ADLs
 4.3 LISA
 4.3.1 LISA Processor Design Platform
 4.3.2 Abstraction Levels
 4.3.3 LISA 2.0 Input Specification
5. PROCESSOR SYSTEM INTEGRATION
 5.1 Simulator Structure
 5.1.1 Standalone Processor Simulator
 5.1.2 The LISA Bus Interface
 5.1.3 SystemC Wrapper
 5.2 Adaptors: Bridging Abstraction Gaps
 5.2.1 LISA Bus/Memory API
 5.2.2 TLM Communication Module API
 5.2.3 API Mapping
 5.2.4 Bus Interface State Machine
 5.3 Commercial SoC Simulation Environments
 5.3.1 CoWare PlatformArchitect System Simulator
 5.3.2 Synopsys SystemStudio SoC Simulator
6. SUCCESSIVE TOP-DOWN REFINEMENT FLOW
 6.1 Phase 1: Standalone
 6.1.1 SoC Communication
 6.1.2 LISA Standalone
 6.2 Phase 2: IA ASIP ↔ AVF Communication Models
 6.3 Phase 3: IA ASIP ↔ CA TLM Bus
 6.4 Phase 4: CA ASIP ↔ CA TLM Bus
 6.5 Phase 5: BCA ASIP ↔ CA TLM Bus
 6.6 Phase 6: RTL ASIP ↔ CA TLM Bus
 6.7 Phase 7: RTL ASIP ↔ RTL Bus

7. AUTOMATIC RETARGETABILITY
 7.1 MP-SoC Simulator Generation Chain
 7.2 Structure of the Generated Simulator
 7.2.1 Creating the Communication Infrastructure
 7.2.2 Generating SystemC Processor Models
 7.2.3 Generating Adaptors
 7.3 Bus Interface Specification
 7.3.1 Overview
 7.3.2 Feeding Data into the State Machine
 7.3.3 Characterizing the State Machine
 7.3.4 Getting Data Out of the State Machine
 7.3.5 Advantages

8. DEBUGGING AND PROFILING
 8.1 Multi-Processor Debugger
 8.1.1 Retargetable Standalone Simulation
 8.1.2 Multi-Processor Synchronization
 8.1.3 Dynamic Connect
 8.1.4 Source Code Level Debugging with GNU gdb
 8.2 TLM Bus Traffic Visualization
 8.2.1 Message Sequence Charts (MSC)
 8.2.2 Word Level Data Display
 8.3 Bus Interface Analysis
 8.3.1 CoWare PlatformArchitect Analysis
 8.3.2 Bus Interface Optimization
9. CASE STUDY
 9.1 Multi Processor JPEG Decoding Platform
 9.1.1 The JPEG Application
 9.1.2 Platform Topologies
 9.1.3 Platform Performance Indicators
 9.2 Phase 2: IA + AVF Platform
 9.3 Phase 3: IA + BusCompiler Platform
 9.4 Phase 4: CA + BusCompiler Platform
 9.5 Phase 5: BCA + BusCompiler Platform

10. SUMMARY

Appendices

A Businterface Definition Files
 A.1 Generic AMBA 2.0 Protocol
 A.2 Derived AMBA 2.0 Protocols
 A.3 AMBA 2.0 Bus Interface Specification

B Extended CoWare Tool Flow

List of Figures

References

Index