Electromagnetic Shielding

SALVATORE CELOZZI
RODOLFO ARANEOT
GIAMPIERO LOVAT

Electrical Engineering Department "La Sapienza" University
Rome, Italy

IEEE Press

A JOHN WILEY & SONS, INC., PUBLICATION
Contents

Preface xi

1 Electromagnetics behind Shielding 1
 1.1 Definitions 1
 1.2 Notation, Symbology, and Acronyms 3
 1.3 Basic Electromagnetics 4
 1.3.1 Macroscopic Electromagnetism and Maxwell’s Equations 4
 1.3.2 Constitutive Relations 6
 1.3.3 Discontinuities and Singularities 9
 1.3.4 Initial and Boundary Conditions 11
 1.3.5 Poynting’s Theorem and Energy Considerations 11
 1.3.6 Fundamental Theorems 13
 1.3.7 Wave Equations, Helmholtz Equations, Electromagnetic
 Potentials, and Green’s Functions 15
 1.4 Basic Shielding Mechanisms 18
 1.5 Source Inside or Outside the Shielding Structure
 and Reciprocity 18
References 19

2 Shielding Materials 21
 2.1 Standard Metallic and Ferromagnetic Materials 21
 2.2 Ferrimagnetic Materials 27
 2.3 Ferroelectric Materials 28
 2.4 Thin Films and Conductive Coatings 30
 2.5 Other Materials Suitable for EM Shielding Applications 32
 2.5.1 Structural Materials 32
 2.5.2 Conductive Polymers 32

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>The Small Circular-Aperture Case</td>
<td>148</td>
</tr>
<tr>
<td>6.5</td>
<td>Small Noncircular Apertures</td>
<td>154</td>
</tr>
<tr>
<td>6.6</td>
<td>Finite Number of Small Apertures</td>
<td>155</td>
</tr>
<tr>
<td>6.7</td>
<td>Rigorous Analysis for Apertures of Arbitrary Shape: Integral Equation Formulation</td>
<td>157</td>
</tr>
<tr>
<td>6.8</td>
<td>Rules of Thumb</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>161</td>
</tr>
<tr>
<td>7</td>
<td>Enclosures</td>
<td>164</td>
</tr>
<tr>
<td>7.1</td>
<td>Modal Expansion of Electromagnetic Fields inside a Metallic Enclosure</td>
<td>165</td>
</tr>
<tr>
<td>7.2</td>
<td>Oscillations inside an Ideal Source-Free Enclosure</td>
<td>168</td>
</tr>
<tr>
<td>7.3</td>
<td>The Enclosure Dyadic Green Function</td>
<td>169</td>
</tr>
<tr>
<td>7.4</td>
<td>Excitation of a Metallic Enclosure</td>
<td>172</td>
</tr>
<tr>
<td>7.5</td>
<td>Damped Oscillations inside Enclosures with Lossy Walls and Quality Factor</td>
<td>173</td>
</tr>
<tr>
<td>7.6</td>
<td>Apertures in Perfectly Conducting Enclosures</td>
<td>175</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Small-Aperture Approximation</td>
<td>176</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Rigorous Analysis: Integral-Equation Formulation</td>
<td>178</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Aperture-Cavity Resonances</td>
<td>180</td>
</tr>
<tr>
<td>7.7</td>
<td>Small Loading Effects</td>
<td>183</td>
</tr>
<tr>
<td>7.8</td>
<td>The Rectangular Enclosure</td>
<td>184</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Symmetry Considerations</td>
<td>187</td>
</tr>
<tr>
<td>7.9</td>
<td>Shielding Effectiveness of a Rectangular Enclosure with a Circular Hole</td>
<td>188</td>
</tr>
<tr>
<td>7.9.1</td>
<td>External Sources: Plane-Wave Excitation</td>
<td>189</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Internal Sources: Electric and Magnetic Dipole Excitations</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>198</td>
</tr>
<tr>
<td>8</td>
<td>Cable Shielding</td>
<td>200</td>
</tr>
<tr>
<td>8.1</td>
<td>Transfer Impedance in Tubular Shielded Cables and Aperture Effects</td>
<td>201</td>
</tr>
<tr>
<td>8.2</td>
<td>Relationship between Transfer Impedance and Shielding Effectiveness</td>
<td>206</td>
</tr>
<tr>
<td>8.3</td>
<td>Actual Cables and Harnesses</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>208</td>
</tr>
<tr>
<td>9</td>
<td>Components and Installation Guidelines</td>
<td>210</td>
</tr>
<tr>
<td>9.1</td>
<td>Gaskets</td>
<td>210</td>
</tr>
<tr>
<td>9.2</td>
<td>Shielded Windows</td>
<td>214</td>
</tr>
<tr>
<td>9.3</td>
<td>Electromagnetic Absorbers</td>
<td>215</td>
</tr>
<tr>
<td>9.4</td>
<td>Shielded Connectors</td>
<td>216</td>
</tr>
<tr>
<td>9.5</td>
<td>Air-Ventilation Systems</td>
<td>216</td>
</tr>
</tbody>
</table>
9.6 Fuses, Switches, and Other Similar Components 217
References 217

10 Frequency Selective Surfaces 219

10.1 Analysis of Periodic Structures 220
10.1.1 Floquet’s Theorem and Spatial Harmonics 220
10.1.2 Plane-Wave Incidence on a Planar 1D Periodic Structure 222
10.1.3 Plane-Wave Incidence on a Planar 2D Periodic Structure 223

10.2 High- and Low-Pass FSSs 225

10.3 Band-Pass and Band-Stop FSSs 228
10.3.1 Center-Connected Elements or N-Pole Elements 229
10.3.2 Loop-Type Elements 230
10.3.3 Solid-Interior-Type Elements 230
10.3.4 Combinations and Fractal Elements 231

10.4 Degrees of Freedom in Designing FSSs 231

10.5 Reconfigurable and Active FSSs 232

10.6 FSSs and Circuit Analog Absorbers 234

10.7 Modeling and Design of FSSs 235
References 236

11 Shielding Design Guidelines 241

11.1 Establishment of the Shielding Requirements 242
11.2 Assessment of the Number and Types of Functional Discontinuities 243
11.3 Assessment of Dimensional Constraints and Nonelectromagnetic Characteristics of Materials 244
11.4 Estimation of Shielding Performance 245
References 246

12 Uncommon Ways of Shielding 247

12.1 Active Shielding 247
12.2 Partial Shields 252
12.3 Chiral Shielding 255
12.4 Metamaterial Shielding 256
References 260

Appendix A Electrostatic Shielding 263

A.1 Basics Laws of Electrostatics 264
A.2 Electrostatic Tools: Electrostatic Potential and Green’s Function 266
A.3 Electrostatic Shields 270
A.3.1 Conductive Electrostatic Shields 270
A.3.2 Dielectric Electrostatic Shields 274
A.3.3 Aperture Effects in Conductive Shields 279
References 281
Appendix B Magnetic Shielding

B.1 Magnetic Shielding Mechanism 283
B.2 Calculation Methods 286
B.3 Boundary-Value Problems 288
 B.3.1 Spherical Magnetic Conducting Shield 288
 B.3.2 Cylindrical Magnetic Conducting Shield in a Transverse Magnetic Field 293
 B.3.3 Cylindrical Magnetic Conducting Shield in a Parallel Magnetic Field 297
 B.3.4 Infinite Plane 301
B.4 Ferromagnetic Shields with Hysteresis 314
References 314

Appendix C Standards and Measurement Methods

C.1 MIL-STD 285 and IEEE STD-299 319
C.2 NSA 65-6 and NSA 94-106 324
C.3 ASTM E1851 325
C.4 ASTM D4935 326
C.5 MIL-STD 461E 328
C.6 Code of Federal Regulations, Title 47, Part 15 335
C.7 ANSI/SCTE 48-3 337
C.8 MIL-STD 1377 338
C.9 IEC Standards 339
C.10 ITU-T Recommendations 344
C.11 Automotive Standards 346
References 350

Index

Index 353