Handbook of Nitride Semiconductors and Devices

Vol. 2: Materials Properties, Physics and Growth
Contents

Preface XIII

Color Tables XXI

1 Metal Contacts to GaN and Processing 1
 Introduction 1
 1.1 A Primer for Semiconductor–Metal Contacts 2
 1.2 Current Flow in Metal–Semiconductor Junctions 6
 1.2.1 The Regime Dominated by Thermionic Emission 10
 1.2.2 Thermionic Field Emission Regime 12
 1.2.3 Direct Tunneling Regime 20
 1.2.4 Leakage Current 24
 1.3 GaN Schottky Barriers for High-Voltage Rectifiers 33
 1.4 Ohmic Contact Resistance 38
 1.4.1 Specific Contact Resistivity 38
 1.4.2 Semiconductor Resistance 39
 1.5 Determination of the Contact Resistivity 40
 1.6 Ohmic Contacts to GaN 46
 1.6.1 Nonalloyed Ohmic Contacts 46
 1.6.2 Alloyed Ohmic Contacts on n-Type GaN 47
 1.6.3 Contacts to p-Type GaN and Transparent Conducting Oxides 53
 1.6.4 Effect of Surface Treatment on Ohmic Contacts 56
 1.6.5 Case of a Forward-Biased p-n Junction in Conjunction with Nonohmic Contacts to p-GaN 58
 1.7 Structural Analysis of Ohmic Contacts on GaN 60
 1.8 Etching Techniques for III Nitrides 65
 1.8.1 Dry (Plasma) Etching 66
 1.8.1.1 Electron Cyclotron Resonance Etching 67
 1.8.1.2 Ion Milling 71
 1.8.1.3 Reactive Ion Etching 73
Contents

1.8.1.4 Inductively Coupled Plasma Etching 75
1.8.1.5 Selective Etching of GaN/AlGaN 77
1.8.1.6 Dry Etching of p-GaN 78
1.8.1.7 Dry Etching on Ga- and N-Face of Freestanding GaN Substrate 78
1.8.1.8 Magnetron Reactive Ion Etching 79
1.8.1.9 Chemically Assisted Ion Beam Etching (CAIBE) 80
1.8.1.10 RF Plasma Etching of GaN 81
1.8.2 Laser Ablation Etching of GaN 83
1.8.3 Wet Etching 84
1.8.4 Photochemical Etching 92
1.9 Implant Isolation 99
1.10 Process Damage 102
References 108

2 Determination of Impurity and Carrier Concentrations 121
 Introduction 121
 2.1 Impurity Binding Energy 121
 2.2 Conductivity Type: Hot Probe and Hall Measurements 122
 2.2.1 Measurement of Mobility 122
 2.3 Semiconductor Statistics, Density of States, and Carrier Concentration 125
 2.3.1 Degeneracy Factor 132
 2.3.2 Charge Balance Equation and Carrier Concentration 135
 2.3.2.1 n-Type Semiconductor 136
 2.3.2.2 p-Type Semiconductor 142
 2.3.2.3 Multiple Occupancy of the Valence Bands 146
 2.4 Capacitance–Voltage Measurements 147
 Appendix 2.A. Fermi Integral 158
 Appendix 2.B. Density of States in 3D, 2D, and 1D Systems 159
 2.B.1. Three-Dimensional Structure 159
 2.B.2. Two-Dimensional Structure 160
 2.B.3. One-Dimensional Structure 161
 References 162

3 Carrier Transport 165
 3.1 Prelude 165
 3.2 Carrier Scattering 169
 3.2.1 Boltzmann Transport Equation 171
 3.2.2 Impurity Scattering 182
 3.2.2.1 Ionized Impurity Scattering 183
 3.2.2.2 Neutral Impurity Scattering 190
 3.2.3 Acoustic Phonon Scattering 192
 3.2.3.1 Deformation Potential Scattering 194
 3.2.3.2 Piezoelectric Scattering 198
 3.2.4 Optical Phonon Scattering 201
3.2.4.1 Nonpolar Optical Phonon Scattering 201
3.2.4.2 Polar Optical Phonon Scattering 203
3.2.5 Short-Range Potential-Induced Scattering 210
3.2.5.1 Alloy Potential-Induced Scattering 212
3.2.5.2 Potential Barrier Scattering 216
3.2.5.3 Potential Well Scattering 218
3.2.5.4 Space Charge Scattering 218
3.2.5.5 Dipole Scattering 219
3.2.6 Carrier–Carrier Scattering 222
3.2.7 Plasmon Scattering 223
3.2.8 Boundary Scattering 225
3.2.9 Dislocation Scattering 225
3.2.10 Effect of Inhomogeneities on Mobility 231
3.3 Calculated Mobility of GaN 232
3.4 Scattering at High Fields 239
3.4.1 Transport at High Fields: Energy and Momentum Relaxation Times 247
3.4.2 Electron–Phonon Interaction 248
3.4.2.1 Polar Optical Phonon Scattering 250
3.4.2.2 Nonpolar Optical Phonon Scattering 251
3.4.2.3 Acoustic Phonon (Deformation Potential) Scattering 251
3.4.2.4 Acoustic Phonon Piezoelectric Scattering 251
3.4.3 High-Field Transport in Single- and Multivalley Models 252
3.5 Measurements of Mobility and Associated Fundamentals 261
3.5.1 Magnetoresistance 261
3.5.2 Hall Effect and Physical Magnetoresistance 268
3.5.2.1 First-Order Mobility Measurement: A Textbook Case 270
3.5.2.2 Higher Order Mobility Measurements with Energy-Dependent Relaxation Time and Hall Factor 274
3.5.2.2.1 Energy-Independent Relaxation Time and Arbitrary B 275
3.5.2.2.2 Energy-Dependent Relaxation Time 276
3.5.3 Geometric Magnetoresistance (GMR) 281
3.5.3.1 Energy-Dependent Relaxation Time $B \to 0$ and $\omega_c \tau$ 281
3.5.3.2 Energy-Dependent Relaxation Time and High B Field, $\omega_c \tau \gg 1$ 282
3.5.4 Hall Factor 282
3.5.5 Multiband Effects and Mixed Conductivity 283
3.5.6 Energy-Dependent Relaxation Time with Low B field ($\omega_c \tau \gg 1$) 286
3.5.7 Energy-Dependent Relaxation Time and High B Field ($\omega_c \tau \ll 1$ for both carriers) 286
3.5.8 Energy-Dependent Relaxation Time and High B Field, $B \to \infty$ 287
3.5.9 Quantitative Mobility Spectrum Analysis 289
3.7 van der Pauw Method 295
3.8 Quantum Hall Effect – Shubnikov–de Haas 301
3.9 Measured Mobility in n-type GaN 315
3.9.1 Mobility in GaN 315
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.2</td>
<td>Delineation of Multiple Conduction Layer Mobilities</td>
<td>326</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Transport Along the c-Direction</td>
<td>329</td>
</tr>
<tr>
<td>3.10</td>
<td>Measurement of High-Field Electron Velocity in n-Type GaN</td>
<td>330</td>
</tr>
<tr>
<td>3.11</td>
<td>Carrier Transport in p-Type GaN</td>
<td>333</td>
</tr>
<tr>
<td>3.12</td>
<td>Carrier Transport in InN</td>
<td>335</td>
</tr>
<tr>
<td>3.13</td>
<td>Carrier Transport in AlN</td>
<td>339</td>
</tr>
<tr>
<td>3.14</td>
<td>Transport in Unintentionally Doped and High-Resistivity GaN</td>
<td>341</td>
</tr>
<tr>
<td>3.15</td>
<td>Carrier Transport in Alloys</td>
<td>343</td>
</tr>
<tr>
<td>3.16</td>
<td>Two-Dimensional Transport in n-Type GaN</td>
<td>348</td>
</tr>
<tr>
<td>3.16.1</td>
<td>General Scattering Theory in 2D Systems</td>
<td>351</td>
</tr>
<tr>
<td>3.16.1.1</td>
<td>Ionized Impurity Scattering in 2D Systems</td>
<td>356</td>
</tr>
<tr>
<td>3.16.1.2</td>
<td>Acoustic Phonon Deformation Potential Scattering</td>
<td>358</td>
</tr>
<tr>
<td>3.16.1.3</td>
<td>Acoustic Phonon Piezoelectric Potential Scattering</td>
<td>359</td>
</tr>
<tr>
<td>3.16.1.4</td>
<td>Polar Optical Phonon Scattering</td>
<td>360</td>
</tr>
<tr>
<td>3.16.2</td>
<td>A General Discussion of Electron Mobility in AlGaN/GaN 2D System</td>
<td>361</td>
</tr>
<tr>
<td>3.16.3</td>
<td>Low-Field Transport in 2DEG Systems</td>
<td>367</td>
</tr>
<tr>
<td>3.16.3.1</td>
<td>Low Temperature</td>
<td>368</td>
</tr>
<tr>
<td>3.16.3.2</td>
<td>High Temperature</td>
<td>369</td>
</tr>
<tr>
<td>3.16.3.3</td>
<td>Interface Phonon Scattering</td>
<td>369</td>
</tr>
<tr>
<td>3.16.3.4</td>
<td>Fröhlich Scattering in Two-Dimensional Electron Gas</td>
<td>369</td>
</tr>
<tr>
<td>3.16.4</td>
<td>Numerical Two-Dimensional Electron Gas Mobility Calculations</td>
<td>370</td>
</tr>
<tr>
<td>3.16.5</td>
<td>Two-Dimensional Hole Gas</td>
<td>378</td>
</tr>
<tr>
<td>3.17</td>
<td>Interface Roughness Scattering</td>
<td>385</td>
</tr>
<tr>
<td>3.18</td>
<td>Quantum Transport in AlGaN/GaN 2DEG</td>
<td>388</td>
</tr>
<tr>
<td>3.19</td>
<td>Observations</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>395</td>
</tr>
</tbody>
</table>

4 The p–n Junction 409

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Heterojunctions</td>
<td>409</td>
</tr>
<tr>
<td>4.2</td>
<td>Band Discontinuities</td>
<td>410</td>
</tr>
<tr>
<td>4.2.1</td>
<td>GaN/AlN Heterostructures</td>
<td>414</td>
</tr>
<tr>
<td>4.2.2</td>
<td>GaN/InN and AlN/InN</td>
<td>416</td>
</tr>
<tr>
<td>4.3</td>
<td>Electrostatic Characteristics of p–n Heterojunctions</td>
<td>428</td>
</tr>
<tr>
<td>4.4</td>
<td>Current–Voltage Characteristics of p–n Junctions</td>
<td>435</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Generation–Recombination Current</td>
<td>436</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Surface Effects</td>
<td>440</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Diode Current Under Reverse Bias</td>
<td>442</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Field Effects and Hopping</td>
<td>442</td>
</tr>
<tr>
<td>4.4.4.1</td>
<td>Poole–Frenkel Current</td>
<td>443</td>
</tr>
<tr>
<td>4.4.4.2</td>
<td>Hopping Current</td>
<td>449</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Avalanche Multiplication</td>
<td>454</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Diffusion Current</td>
<td>459</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Diode Current Under Forward Bias</td>
<td>463</td>
</tr>
</tbody>
</table>
4.5
I–V Characteristics of Ideal GaN-Based p–n Junctions 464
4.6
I–V Characteristics of GaN-Based p–n Junctions 468
4.6.1 GaN p–n Junctions 468
4.6.1.1 Forward Bias I–V 468
4.6.1.2 Reverse Bias I–V 474
4.6.2 AlGaN–GaN Heterojunctions 480
4.6.3 AlGaN Heterojunctions 481
4.7 High-Voltage Blocking GaN and AlGaN-Based p–n Junctions 483
References 485

5
Optical Processes in Semiconductors and Optical Properties of Nitride Semiconductors and Heterostructures 491
Introduction 491
5.1 Basics of Photoluminescence 498
5.1.1 Steady-State Photoluminescence 499
5.1.2 Recombination Statistics 500
5.1.3 Effect of Temperature on PL Intensity 501
5.1.4 Quantum Efficiency 503
5.1.5 Effect of Excitation Intensity on PL Intensity 504
5.1.6 Determination of Acceptor Concentration in n-type GaN 504
5.1.7 Time-Resolved Luminescence 505
5.1.8 Photoluminescence Excitation Spectra 507
5.1.9 Spatially and Depth-Resolved Cathodoluminescence 508
5.1.10 Optically Detected Magnetic Resonance 509
5.2 Band-to-Band Transitions 509
5.2.1 Excitonic Transitions 511
5.3 Optical Transitions in GaN 512
5.3.1 Excitonic Transitions in GaN 513
5.3.1.1 Free Excitons 514
5.3.1.1.1 Polaronic 517
5.3.1.2 Bound Excitons 542
5.3.1.2.1 Excitons Bound to Shallow Donors 547
5.3.1.2.2 Excitons Bound to Acceptors 560
5.3.1.3 Excitons in Magnetic Field 562
5.3.2 Exciton Recombination Dynamics 575
5.3.2.1 Exciton Recombination Dynamics at Low-to-Medium Injection Levels 578
5.3.2.2 Recombination Dynamics at High Injection Levels 587
5.3.3 Free-to-Bound Transitions 589
5.3.4 Donor–Acceptor Transitions 591
5.3.5 Luminescence Related to Structural Defects 593
5.3.5.1 Effect of Excitation Intensity 599
5.3.5.2 Effect of Temperature 600
5.3.5.3 Properties of the Yi Peaks 606
Contents

5.3.6 Emission from Deep-Level Defects 610
5.3.6.1 Yellow Luminescence 610

5.4 Group-II Element Related Transitions 620
5.4.1 Role of Potential Fluctuations in GaN 620
5.4.2 Role of Coulombic Interaction in Transition Energies in GaN 623
5.4.3 UVL and BL Bands in Compensated and Heavily Mg-Doped GaN 623

5.4.4 Local Structure of the Blue Band in GaN:Mg 631
5.4.5 Blue Luminescence Band in Zn-Doped GaN 632
5.5 Blue Luminescence Band in Undoped GaN 633
5.5.1 Characteristics of Blue Luminescence in Undoped GaN 634
5.5.2 Comparison of Photoluminescence in Undoped and Zn-Doped GaN 636

5.6 Surface-Related Blue Luminescence in Etched GaN 638
5.7 Optical Properties of GaN Doped with Rare Earths 642
5.7.1 Luminescence of Rare Earth in GaN 643
5.7.1.1 Red Emission in Eu-Doped GaN 643
5.7.1.2 Red Emission in Pr-Doped GaN 648
5.7.1.3 Green and Infrared Emission in Er-Doped GaN 649
5.7.1.4 Blue Emission in Tm-Doped GaN 652
5.8 Optical Properties of Alloys 653
5.8.1 Localization in Alloys 654
5.8.2 Optical Properties of AlGaN 656
5.8.3 Optical Properties of InGaN 661
5.8.4 Optical Properties of InAlN 665
5.9 Optical Properties of Nitride Heterostructures 666
5.9.1 GaN/AlGaN Quantum Wells 668
5.9.1.1 Polarization and Carrier Dynamics in GaN/AlGaN Quantum Wells 678
5.9.1.1.1 Polarization in Quantum Wells with Implications to GaN/AlGaN Wells 679
5.9.1.2 Optical Properties of Non-c-Plane GaN Based Structures 687
5.9.1.3 Carrier Dynamics in GaN/AlGaN Quantum Wells 694
5.9.2 Optical Properties of GaN/AlGaN Modulation-Doped Heterostructures 698
5.9.3 InGaN/GaN, InGaN/InGaN, and InGaAlN/InGaAlN Quantum Wells 705
5.9.3.1 InGaN/GaN, InGaN/InGaN Quantum Wells 707
5.9.3.2 Localization and Polarization in InGaN Quantum Wells 708
5.9.3.3 Size Dependence of the LO-Phonon Coupling in InGaN Quantum Wells 714
5.9.3.4 InGaAlN/InGaAlN Quantum Wells 720
5.10 Quantum Dots 723
5.10.1 Effects of Quantum Confinement, Strain and Polarization 724
5.10.2 GaN Quantum Dots 729