Seizure Prediction in Epilepsy

From Basic Mechanisms to Clinical Applications

Edited by
Björn Schelter, Jens Timmer,
and Andreas Schulze-Bonhage
Contents

Preface XV

Thanks to the Sponsors of the Workshop XVII

List of Contributors XIX

Color Plates XXVII

1 Unpredictability of Seizures and the Burden of Epilepsy 1
Andreas Schulze-Bonhage, Anne Kühn

1.1 Introduction 1

1.2 Medical Implications of Unpredictability 2
1.2.1 Diagnostic Uncertainty 2
1.2.2 Treatment Options 2
1.2.3 Physical Risks 3
1.2.4 Risks Associated with Continuous Long-term Antiepileptic Treatment 4

1.3 Psychosocial Consequences of Unpredictability 4
1.3.1 Loss of Control 4
1.3.2 Problems with Coping Strategies 6
1.3.3 Depression and Anxiety 6
1.3.4 Immobility and Vocational Restrictions 7

1.4 Conclusion 8

References 8

2 The History of Seizure Prediction 11
M. Jachan, H. Feldwisch genannt Drentrup, B. Schelter, J. Timmer

2.1 Introduction 11

2.2 Motivation 11
2.2.1 The Need for a Seizure-prediction Device 12

2.2.2 The Assumed Preictal Phase 14

2.3 A Historical Overview 15

2.3.1 Older Types of Studies 16
3 Impact of Computational Models for an Improved Understanding of Ictogenesis: From Single Neurons to Networks of Neurons 25
Marie-Therese Horstmann, Andy Müller, Alexander Rothkegel, Justus Schwabedal, Christian E. Elger, Klaus Lehnertz
3.1 Introduction 25
3.2 Single Neuron Models 27
3.2.1 Conductance-based Models 28
3.2.2 Single Neuron Models and Epilepsy 29
3.3 Neural Networks 31
3.3.1 Network Characteristics 32
3.4 Neural Mass Models of the EEG 35
3.5 Conclusion 38
References 39

4 Effective and Anatomical Connectivity in a Rat Model of Spontaneous Limbic Seizure 45
Paul R. Carney, Alex Cadotte, Thomas B. DeMarse, Baba Vemuri, Thomas H. Mareci, William Ditto
4.1 Introduction 45
4.2 Granger Causality 46
4.2.1 Analysis of Temporal Lobe Seizures 48
4.2.2 Results 50
4.2.3 Discussion 52
4.3 Structural Visualization with Magnetic Resonance 54
4.3.1 Diffusion Tensor Imaging 54
4.3.2 High Angular Resolution Diffusion Imaging 55
4.4 Acknowledgments 57
References 58

5 Network Models of Epileptiform Activity: Explorations in Seizure Evolution and Alteration 61
Pawel Kudela, William S. Anderson, Piotr J. Franaszczuk, Gregory K. Bergey
5.1 Introduction 61
5.2 Time-frequency Analyses of Seizure Dynamics and Evolution 62
5.3 Model Assumptions and Modeling Approach 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Recurrent Neuronal Bursting and Mechanism of Burst Frequency Decline</td>
<td>64</td>
</tr>
<tr>
<td>5.5</td>
<td>Network Models of Epileptiform Activity Disruption by External Stimulation</td>
<td>67</td>
</tr>
<tr>
<td>5.6</td>
<td>Chain Network Model Studies</td>
<td>69</td>
</tr>
<tr>
<td>5.7</td>
<td>Networks with Realistic Cortical Architecture</td>
<td>71</td>
</tr>
<tr>
<td>5.8</td>
<td>Conclusions</td>
<td>79</td>
</tr>
<tr>
<td>5.9</td>
<td>Acknowledgment</td>
<td>80</td>
</tr>
<tr>
<td>5.10</td>
<td>Appendix</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>Recurrent Cortical Network Activity and Modulation of Synaptic Transmission</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Yousheng Shu</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>The Ability of the Cortical Network to Generate Recurrent Activity</td>
<td>84</td>
</tr>
<tr>
<td>6.3</td>
<td>Cortical Network Activity as Propagating Electrical Waves</td>
<td>85</td>
</tr>
<tr>
<td>6.4</td>
<td>Balance of Excitation and Inhibition during Cortical Network Activity</td>
<td>86</td>
</tr>
<tr>
<td>6.5</td>
<td>Initiation and Termination of Cortical Network Activity by Electrical Shock</td>
<td>86</td>
</tr>
<tr>
<td>6.6</td>
<td>Epileptiform Activity Results from Imbalance of Excitation and Inhibition</td>
<td>89</td>
</tr>
<tr>
<td>6.7</td>
<td>Conduction of Action Potentials in the Axon during Normal and Epileptiform Activity</td>
<td>89</td>
</tr>
<tr>
<td>6.8</td>
<td>Traveling of Subthreshold Potentials in the Axon</td>
<td>90</td>
</tr>
<tr>
<td>6.9</td>
<td>Modulation of Intracortical Synaptic Transmission by Presynaptic Somatic Membrane Potential</td>
<td>91</td>
</tr>
<tr>
<td>6.10</td>
<td>Mechanisms Underlying EPSP Facilitation Induced by Somatic Depolarization</td>
<td>93</td>
</tr>
<tr>
<td>6.11</td>
<td>Summary</td>
<td>94</td>
</tr>
<tr>
<td>6.12</td>
<td>Acknowledgments</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>Epilepsy as a Disease of the Dynamics of Neuronal Networks - Models and Predictions</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Fernando Lopes da Silva</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>97</td>
</tr>
<tr>
<td>7.2</td>
<td>Experimental Observations - Case 1: The WAG/Rij Rat as a Genetic Model for Absence Epilepsy</td>
<td>98</td>
</tr>
<tr>
<td>7.3</td>
<td>Computational Model of the Thalamo-Cortical Neuronal Networks</td>
<td>99</td>
</tr>
<tr>
<td>7.4</td>
<td>Model Predictions</td>
<td>100</td>
</tr>
<tr>
<td>7.5</td>
<td>Experimental Observations - Case 2: Hippocampal Seizures</td>
<td>103</td>
</tr>
</tbody>
</table>
7.6 Active Observation: Stimulation with 'Carrier Frequency' – Changes in Phase Clustering Index (PCI) 104
7.7 Conclusion 106
References 107

8 Neuronal Synchronization and the 'Ictio-centric' vs the Network Theory for Ictiogenesis: Mechanistic and Therapeutic Implications for Clinical Epileptology 109
Ivan Osorio, Mark G. Frei, Ying-Cheng Lai
8.1 Seizures and Neuronal Synchronization: Increased or Decreased Relative to Interictal Values? 109
8.2 The 'Focus' ('Ictio-centric') vs the Network Theory in Ictiogenesis 112
References 114

9 Cellular Neural Networks and Seizure Prediction: An Overview 117
P. Fischer, F. Collas, R. Kunz, C. Niederhöfer, H. Reichau, R. Tetzlaff
9.1 Introduction: Cellular Neural Networks 117
9.2 Spatio-temporal Signal Prediction in Epilepsy by Delay-type Discrete-time Cellular Nonlinear Networks (DT-CNN) 119
9.3 Identification of EEG-signals by Reaction-Diffusion CNN 121
9.4 A CNN-based Pattern Detection Algorithm 123
9.4.1 Preprocessing the Data 124
9.4.2 Performing the Pattern Detection 124
9.4.3 Detecting Seizures by POI Evaluation 125
9.5 CNN for Approximation of the Effective Correlation Dimension in Epilepsy 126
References 128

10 Time Series Analysis with Cellular Neural Networks 131
Anton Chernihovskyi, Dieter Krug, Christian E. Elger, Klaus Lehnertz
10.1 Introduction 131
10.2 Cellular Neural Networks 132
10.3 An Analytical CNN-based Method for Pattern Detection in Non-stationary and Noisy Time Series 134
10.4 An Adaptive CNN-based Method to Measure Synchronization 138
10.4.1 Learning Synchronization in EEG Time Series with CNN 141
10.5 Conclusions and Outlook 144
References 145
15.2.1	Measures of Synchronization	190
15.2.2	Phase Synchronization	191
15.2.3	Generalized Synchronization	192
15.3	Information Theoretic Measures	194
15.4	Exemplary Applications	195
15.5	Multivariate Time Series Analysis Techniques	199
15.5.1	Approaches Based on Random Matrix Theory	199
15.5.2	Approaches Based on Network Theory	202
15.6	Conclusions	204
References	204	

16 | A Multivariate Approach to Correlation Analysis Based on Random Matrix Theory | 209 |
| Markus Müller, Gerold Baier, Christian Rummel, Kaspar Schindler, Ulrich Stephani |
16.1	Introduction	209
16.2	The Equal-time Correlation Matrix	210
16.3	Eigenvalues, Eigenvectors and Interrelations between Data Channels	211
16.4	Random and Non-random Level Repulsion	213
16.5	RMT Measures: Motivation and Definition	215
16.6	Application to a Test System	218
16.7	Cluster Detection based on Eigenvectors	221
16.8	Application to EEG Recordings	223
16.9	Conclusions	224
References	225	

17 | Seizure Prediction in Epilepsy: Does a Combination of Methods Help? | 227 |
| Hinnerk Feldwisch genannt Drentrup, Michael Jachan, Björn Schelter |
17.1	Introduction	227
17.2	Materials and Methods	228
17.2.1	The Seizure-prediction Characteristic	228
17.2.2	Combination of Individual Prediction Methods	229
17.2.3	Patient Characteristics	231
17.3	Results	232
17.4	Discussion	234
17.5	Acknowledgments	235
References	235	

18 | Can Your Prediction Algorithm Beat a Random Predictor? | 237 |
| Björn Schelter, Ralph G. Andrzejak, Florian Mormann |
| 18.1 | Introduction | 237 |
| 18.2 | Performance Assessment | 238 |
18.2.1 General Methodology of Seizure Prediction

18.2.2 The ROC Curve

18.2.3 The Seizure-prediction Characteristic

18.3 Statistical Validation

18.3.1 The Analytic Random Predictor

18.3.2 Bootstrapping Techniques

18.4 Conclusion

18.5 Acknowledgments

References

19 Testing a Prediction Algorithm: Assessment of Performance

J. Chris Sackellares, Deng-Shan Shiau, Kevin M. Kelly, Sandeep P. Nair

19.1 Introduction

19.2 Correlation between Study Design and Clinical Application

19.3 Statistical Hypothesis

19.4 Statistical Justification

19.4.1 Prediction Sensitivity

19.4.2 False-positive Rate

19.5 Discussion and Conclusion

References

20 Considerations on Database Requirements for Seizure Prediction

Carolin Gierschner, Andreas Schulze-Bonhage

20.1 Introduction

20.2 General Requirements for a Prediction Database

20.3 Raw Data

20.3.1 Annotations to Raw Data

20.4 Metadata on Telemetry

20.5 Metadata on the Clinically Defined Epilepsy Syndrome

20.6 Database Structure

References

21 Beyond Prediction – Focal Cooling and Optical Activation to Terminate Focal Seizures

Steven M. Rothman

21.1 Introduction

21.1.1 Scope of the Problem

21.1.2 Alternatives to Permanent Resection for Neocortical Epilepsy

21.2 Cooling and the Brain

21.2.1 Methods for Cooling

21.2.2 Results of Cooling Experimental Seizures

References
21.2.3 Future Plans for Cooling 275
21.3 Focal Uncaging for Epilepsy 277
21.3.1 Early Results with Uncaging 278
21.3.2 Uncaging BC204 Suppresses ‘Seizure-like’ Activity 279
21.3.3 Future Plans for in vivo Uncaging 280
21.4 Acknowledgments 281
References 281

22 Vagus Nerve and Hippocampal Stimulation for Refractory Epilepsy 283
Paul Boon, Veerle De Herdt, Annelies Van Dycke, Tine Wyckhuys, Liesbeth Waterschoot, Riem El Tahry, Dirk Van Roost, Robrecht Raedt, Wytse Wadman, Kristl Vonck
22.1 Introduction 283
22.2 Vagus Nerve Stimulation 285
22.2.1 Clinical Efficacy and Safety 285
22.2.1.1 Randomised Controlled Trials 285
22.2.1.2 Clinical Trials with Long-term Follow-up 286
22.2.2 Safety, Side-effects and Tolerability 287
22.2.2.1 Ramping up and Long-term Stimulation 287
22.2.2.2 MRI 289
22.2.3 Mechanism of Action 290
22.3 Hippocampal Stimulation 292
22.3.1 Clinical Efficacy and Safety 292
22.3.2 Mechanism of Action 293
22.4 Conclusion 293
References 294

23 Responsive Neurostimulation for the Treatment of Epileptic Seizures 299
Gregory K. Bergey
23.1 Introduction 299
23.2 Characteristics of Partial Seizures 299
23.3 Types of Neurostimulation 300
23.4 Current Status of Investigations of Responsive Neurostimulation 302
23.5 Conclusion 305
References 306

24 Chronic Anterior Thalamic Deep-brain Stimulation as a Treatment for Intractable Epilepsy 307
Richard Wennberg
24.1 Introduction 307
24.2 Anterior Thalamus DBS for Epilepsy 308
24.3 EEG Recordings 313
Contents

24.4 Conclusions 314
References 315

25 Thoughts about Seizure Prediction from the
Perspective of a Clinical Neurophysiologist 317
Demetrios N. Velis
25.1 Introduction 317
25.2 Appendix: Does the EEGer Need Seizure Prediction? 321
References 322

26 State of Seizure Prediction: A Report on Informal Discussions
with Participants of the Third International Workshop
on Seizure Prediction 325
Hitten P. Zaveri, Mark G. Frei, Ivan Osorio
26.1 Introduction 325
26.2 Modality 327
26.3 Seizure Generation and Models 327
26.4 Academia and Industry 328
26.5 The Question of Seizure Prediction and its Prioritization 328
26.6 Summary 329
26.7 Acknowledgement 330

Index 331