Martin Maldovan and
Edwin L. Thomas

Periodic Materials and
Interference Lithography

for Photonics, Phononics and Mechanics
Contents

Preface XI
Introduction XIII

Theory 1

1 **Structural Periodicity** 3
1.1 Nonperiodic versus Periodic Structures 4
1.2 Two-dimensional Point Lattices 6
1.3 Three-dimensional Point Lattices 10
1.3.1 Primitive and Nonprimitive Unit Cells 14
1.4 Mathematical Description of Periodic Structures 16
1.5 Fourier Series 20
1.5.1 Fourier Series for Two-dimensional Periodic Functions 20
1.5.2 Fourier Series for Three-dimensional Periodic Functions 23
1.5.3 Arbitrary Unit Cells 25
Further Reading 26
Problems 26

2 **Periodic Functions and Structures** 29
2.1 Introduction 30
2.2 Creating Simple Periodic Functions in Two Dimensions 31
2.2.1 The Square Lattice 31
2.2.2 The Triangular Lattice 38
2.3 Creating Simple Periodic Functions in Three Dimensions 41
2.3.1 The Simple Cubic Lattice 44
2.3.2 The Face-centered-cubic Lattice 47
2.3.3 The Body-centered-cubic Lattice 51
2.4 Combination of Simple Periodic Functions 59
Problems 61

3 **Interference of Waves and Interference Lithography** 63
3.1 Electromagnetic Waves 64
Contents

3.2 The Wave Equation 65
3.3 Electromagnetic Plane Waves 68
3.4 The Transverse Character of Electromagnetic Plane Waves 69
3.5 Polarization 72
3.5.1 Linearly Polarized Electromagnetic Plane Waves 73
3.5.2 Circularly Polarized Electromagnetic Plane Waves 74
3.5.3 Elliptically Polarized Electromagnetic Plane Waves 75
3.6 Electromagnetic Energy 75
3.6.1 Energy Density and Energy Flux for Electromagnetic Plane Waves 77
3.6.2 Time-averaged Values 77
3.6.3 Intensity 80
3.7 Interference of Electromagnetic Plane Waves 81
3.7.1 Three-dimensional Interference Patterns 86
3.8 Interference Lithography 89
3.8.1 Photoresist Materials 89
3.8.2 The Interference Lithography Technique 92
3.8.3 Designing Periodic Structures 93
Further Reading 94
Problems 94

4 Periodic Structures and Interference Lithography 97
4.1 The Connection between the Interference of Plane Waves and Fourier Series 98
4.2 Simple Periodic Structures in Two Dimensions Via Interference Lithography 100
4.3 Simple Periodic Structures in Three Dimensions Via Interference Lithography 104
Further Reading 110
Problems 111

Experimental 113

5 Fabrication of Periodic Structures 115
5.1 Introduction 116
5.2 Light Beams 116
5.3 Multiple Gratings and the Registration Challenge 118
5.4 Beam Configuration 119
5.4.1 Using Four Beams 119
5.4.2 Using a Single Beam (Phase Mask Lithography) 120
5.5 Pattern Transfer: Material Platforms and Photoresists 122
5.5.1 Negative Photoresists 124
5.5.2 Positive Photoresists 126
5.5.3 Organic–Inorganic Hybrids Resists 128
5.6 Practical Considerations for Interference Lithography 128
5.6.1 Preserving Polarizations and Directions 128
5.6.2 Contrast 131
5.6.3 Drying 132
5.6.4 Shrinkage 133
5.6.5 Backfilling – Creating Inverse Periodic Structures 133
5.6.6 Volume Fraction Control 134
5.7 Closing Remarks 135
Further Reading 136

Applications 139

6 Photonic Crystals 141
6.1 Introduction 142
6.2 One-dimensional Photonic Crystals 143
6.2.1 Finite Periodic Structures 143
6.2.2 Infinite Periodic Structures 147
6.2.3 Finite versus Infinite Periodic Structures 150
6.3 Two-dimensional Photonic Crystals 151
6.3.1 Reciprocal Lattices and Brillouin Zones in Two Dimensions 152
6.3.2 Band Diagrams and Photonic Band Gaps in Two Dimensions 157
6.3.3 Photonic Band Gaps in Two-dimensional Simple Periodic Structures 160
6.4 Three-dimensional Photonic Crystals 162
6.4.1 Reciprocal Lattices and Brillouin Zones in Three Dimensions 164
6.4.2 Band Diagrams and Photonic Band Gaps in Three Dimensions 168
6.4.3 Photonic Band Gaps in Three-dimensional Simple Periodic Structures 170
Further Reading 176
Problems 179

7 Phononic Crystals 183
7.1 Introduction 184
7.1.1 Elastic Waves in Homogeneous Solid Materials 184
7.1.2 Acoustic Waves in Homogeneous Fluid Materials 187
7.2 Phononic Crystals 188
7.3 One-dimensional Phononic Crystals 190
7.3.1 Finite Periodic Structures 190
7.3.2 Infinite Periodic Structures 194
7.4 Two-dimensional Phononic Crystals 198
7.4.1 Vacuum Cylinders in a Solid Background 198
7.4.2 Solid Cylinders in Air 202
7.4.3 Phononic Band Gaps in Two-dimensional Simple Periodic Structures 205
7.5 Three-dimensional Phononic Crystals 207
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.1</td>
<td>Solid Spheres in a Solid Background Material</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>213</td>
</tr>
<tr>
<td>8</td>
<td>Periodic Cellular Solids</td>
<td>215</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>216</td>
</tr>
<tr>
<td>8.2</td>
<td>One-dimensional Hooke’s Law</td>
<td>218</td>
</tr>
<tr>
<td>8.3</td>
<td>The Stress Tensor</td>
<td>219</td>
</tr>
<tr>
<td>8.4</td>
<td>The Strain Tensor</td>
<td>221</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Expansion</td>
<td>225</td>
</tr>
<tr>
<td>8.4.2</td>
<td>General Deformation</td>
<td>226</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Resolving a General Deformation as Strain Plus Rotation</td>
<td>227</td>
</tr>
<tr>
<td>8.5</td>
<td>Stress–Strain Relationship: The Generalized Hooke’s Law</td>
<td>229</td>
</tr>
<tr>
<td>8.6</td>
<td>The Generalized Hooke’s Law in Matrix Notation</td>
<td>230</td>
</tr>
<tr>
<td>8.7</td>
<td>The Elastic Constants of Cubic Crystals</td>
<td>232</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Young’s Modulus and Poisson’s Ratio</td>
<td>233</td>
</tr>
<tr>
<td>8.7.2</td>
<td>The Shear Modulus</td>
<td>235</td>
</tr>
<tr>
<td>8.7.3</td>
<td>The Bulk Modulus</td>
<td>237</td>
</tr>
<tr>
<td>8.8</td>
<td>Topological Design of Periodic Cellular Solids</td>
<td>238</td>
</tr>
<tr>
<td>8.9</td>
<td>Finite Element Program to Calculate Linear Elastic Mechanical Properties</td>
<td>243</td>
</tr>
<tr>
<td>8.10</td>
<td>Linear Elastic Mechanical Properties of Periodic Cellular Solids</td>
<td>243</td>
</tr>
<tr>
<td>8.11</td>
<td>Twelve-connected Stretch-dominated Periodic Cellular Solids via Interference Lithography</td>
<td>247</td>
</tr>
<tr>
<td>8.12</td>
<td>Fabrication of a Simple Cubic Cellular Solid via Interference Lithography</td>
<td>249</td>
</tr>
<tr>
<td>8.13</td>
<td>Plastic Deformation of Microframes</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>252</td>
</tr>
<tr>
<td>9</td>
<td>Further Applications</td>
<td>255</td>
</tr>
<tr>
<td>9.1</td>
<td>Controlling the Spontaneous Emission of Light</td>
<td>256</td>
</tr>
<tr>
<td>9.2</td>
<td>Localization of Light: Microcavities and Waveguides</td>
<td>259</td>
</tr>
<tr>
<td>9.3</td>
<td>Simultaneous Localization of Light and Sound in Photonic–Phononic Crystals: Novel Acoustic–Optical Devices</td>
<td>264</td>
</tr>
<tr>
<td>9.4</td>
<td>Negative Refraction and Superlenses</td>
<td>268</td>
</tr>
<tr>
<td>9.5</td>
<td>Multifunctional Periodic Structures: Maximum Transport of Heat and Electricity</td>
<td>272</td>
</tr>
<tr>
<td>9.6</td>
<td>Microfluidics</td>
<td>273</td>
</tr>
<tr>
<td>9.7</td>
<td>Thermoelectric Energy</td>
<td>275</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Peltier Effect</td>
<td>275</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Thomson Effect</td>
<td>276</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Seebeck Effect</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>278</td>
</tr>
</tbody>
</table>
Appendix A MATLAB Program to Calculate the Optimal Electric Field Amplitude Vectors for the Interfering Light Beams 281

Appendix B MATLAB Program to Calculate Reflectance versus Frequency for One-dimensional Photonic Crystals 289

Appendix C MATLAB Program to Calculate Reflectance versus Frequency for One-dimensional Phononic Crystals 297

Index 305