CONTENTS

PREFACE xxiv

1 INTRODUCTION 1

1.1 WHAT IS AN OPERATING SYSTEM? 3

1.1.1 The Operating System as an Extended Machine 4
1.1.2 The Operating System as a Resource Manager 6

1.2 HISTORY OF OPERATING SYSTEMS 7

1.2.1 The First Generation (1945–55) Vacuum Tubes 7
1.2.2 The Second Generation (1955–65) Transistors and Batch Systems 8
1.2.3 The Third Generation (1965–1980) ICs and Multiprogramming 10
1.2.4 The Fourth Generation (1980–Present) Personal Computers 15

1.3 COMPUTER HARDWARE REVIEW 19

1.3.1 Processors 19
1.3.2 Memory 23
1.3.3 Disks 26
1.3.4 Tapes 27
1.3.5 I/O Devices 27
1.3.6 Buses 30
1.3.7 Booting the Computer 33
CONTENTS

1.4 THE OPERATING SYSTEM ZOO 33
 1.4.1 Mainframe Operating Systems 34
 1.4.2 Server Operating Systems 34
 1.4.3 Multiprocessor Operating Systems 34
 1.4.4 Personal Computer Operating Systems 35
 1.4.5 Handheld Computer Operating Systems 35
 1.4.6 Embedded Operating Systems 35
 1.4.7 Sensor Node Operating Systems 36
 1.4.8 Real-Time Operating Systems 36
 1.4.9 Smart Card Operating Systems 37

1.5 OPERATING SYSTEM CONCEPTS 37
 1.5.1 Processes 38
 1.5.2 Address Spaces 40
 1.5.3 Files 40
 1.5.4 Input/Output 43
 1.5.5 Protection 44
 1.5.6 The Shell 44
 1.5.7 Ontogeny Recapitulates Phylogeny 46

1.6 SYSTEM CALLS 49
 1.6.1 System Calls for Process Management 52
 1.6.2 System Calls for File Management 56
 1.6.3 System Calls for Directory Management 57
 1.6.4 Miscellaneous System Calls 58
 1.6.5 The Windows Win32 API 59

1.7 OPERATING SYSTEM STRUCTURE 62
 1.7.1 Monolithic Systems 62
 1.7.2 Layered Systems 63
 1.7.3 Microkernels 64
 1.7.4 Client-Server Model 67
 1.7.5 Virtual Machines 67
 1.7.6 Exokernels 71

1.8 THE WORLD ACCORDING TO C 72
 1.8.1 The C Language 72
 1.8.2 Header Files 73
 1.8.3 Large Programming Projects 74
 1.8.4 The Model of Run Time 75

1.9 RESEARCH ON OPERATING SYSTEMS 76
2 PROCESSES AND THREADS 83

2.1 PROCESSES 83
 2.1.1 The Process Model 84
 2.1.2 Process Creation 86
 2.1.3 Process Termination 88
 2.1.4 Process Hierarchies 89
 2.1.5 Process States 90
 2.1.6 Implementation of Processes 91
 2.1.7 Modeling Multiprogramming 93

2.2 THREADS 95
 2.2.1 Thread Usage 95
 2.2.2 The Classical Thread Model 100
 2.2.3 POSIX Threads 104
 2.2.4 Implementing Threads in User Space 106
 2.2.5 Implementing Threads in the Kernel 109
 2.2.6 Hybrid Implementations 110
 2.2.7 Scheduler Activations 111
 2.2.8 Pop-Up Threads 112
 2.2.9 Making Single-Threaded Code Multithreaded 114

2.3 INTERPROCESS COMMUNICATION 117
 2.3.1 Race Conditions 117
 2.3.2 Critical Regions 119
 2.3.3 Mutual Exclusion with Busy Waiting 120
 2.3.4 Sleep and Wakeup 125
 2.3.5 Semaphores 128
 2.3.6 Mutexes 130
 2.3.7 Monitors 134
 2.3.8 Message Passing 140
 2.3.9 Barriers 144
2.4 SCHEDULING 145
2.4.1 Introduction to Scheduling 145
2.4.2 Scheduling in Batch Systems 152
2.4.3 Scheduling in Interactive Systems 154
2.4.4 Scheduling in Real-Time Systems 160
2.4.5 Policy versus Mechanism 161
2.4.6 Thread Scheduling 162

2.5 CLASSICAL IPC PROBLEMS 163
2.5.1 The Dining Philosophers Problem 164
2.5.2 The Readers and Writers Problem 167

2.6 RESEARCH ON PROCESSES AND THREADS 168

2.7 SUMMARY 169

3 MEMORY MANAGEMENT 175

3.1 NO MEMORY ABSTRACTION 176

3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 179
3.2.1 The Notion of an Address Space 180
3.2.2 Swapping 181
3.2.3 Managing Free Memory 184

3.3 VIRTUAL MEMORY 188
3.3.1 Paging 189
3.3.2 Page Tables 193
3.3.3 Speeding Up Paging 194
3.3.4 Page Tables for Large Memories 198

3.4 PAGE REPLACEMENT ALGORITHMS 201
3.4.1 The Optimal Page Replacement Algorithm 202
3.4.2 The Not Recently Used Page Replacement Algorithm 203
3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 204
3.4.4 The Second-Chance Page Replacement Algorithm 204
3.4.5 The Clock Page Replacement Algorithm 205
3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 206
3.4.7 Simulating LRU in Software 207
3.4.8 The Working Set Page Replacement Algorithm 209
CONTENTS

3.4.9 The WSClock Page Replacement Algorithm 213
3.4.10 Summary of Page Replacement Algorithms 215

3.5 DESIGN ISSUES FOR PAGING SYSTEMS 216
3.5.1 Local versus Global Allocation Policies 216
3.5.2 Load Control 218
3.5.3 Page Size 219
3.5.4 Separate Instruction and Data Spaces 221
3.5.5 Shared Pages 221
3.5.6 Shared Libraries 223
3.5.7 Mapped Files 225
3.5.8 Cleaning Policy 226
3.5.9 Virtual Memory Interface 226

3.6 IMPLEMENTATION ISSUES 227
3.6.1 Operating System Involvement with Paging 227
3.6.2 Page Fault Handling 228
3.6.3 Instruction Backup 229
3.6.4 Locking Pages in Memory 230
3.6.5 Backing Store 231
3.6.6 Separation of Policy and Mechanism 233

3.7 SEGMENTATION 234
3.7.1 Implementation of Pure Segmentation 237
3.7.2 Segmentation with Paging: MULTICS 238
3.7.3 Segmentation with Paging: The Intel Pentium 242

3.8 RESEARCH ON MEMORY MANAGEMENT 247

3.9 SUMMARY 248

4 FILE SYSTEMS 255

4.1 FILES 257
4.1.1 File Naming 257
4.1.2 File Structure 259
4.1.3 File Types 260
4.1.4 File Access 262
4.1.5 File Attributes 263
4.1.6 File Operations 264
4.1.7 An Example Program Using File System Calls 265

4.2 DIRECTORIES 268
4.2.1 Single-Level Directory Systems 268
4.2.2 Hierarchical Directory Systems 268
4.2.3 Path Names 269
4.2.4 Directory Operations 272

4.3 FILE SYSTEM IMPLEMENTATION 273
4.3.1 File System Layout 273
4.3.2 Implementing Files 274
4.3.3 Implementing Directories 280
4.3.4 Shared Files 283
4.3.5 Log-Structured File Systems 285
4.3.6 Journaling File Systems 287
4.3.7 Virtual File Systems 288

4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION 292
4.4.1 Disk Space Management 292
4.4.2 File System Backups 298
4.4.3 File System Consistency 304
4.4.4 File System Performance 307
4.4.5 Defragmenting Disks 311

4.5 EXAMPLE FILE SYSTEMS 312
4.5.1 CD-ROM File Systems 312
4.5.2 The MS-DOS File System 318
4.5.3 The UNIX V7 File System 321

4.6 RESEARCH ON FILE SYSTEMS 324

4.7 SUMMARY 324

5 INPUT/OUTPUT 329

5.1 PRINCIPLES OF I/O HARDWARE 329
5.1.1 I/O Devices 330
5.1.2 Device Controllers 331
6 DEADLOCKS

6.1 RESOURCES 434
 6.1.1 Preemptable and Nonpreemptable Resources 434
 6.1.2 Resource Acquisition 435

6.2 INTRODUCTION TO DEADLOCKS 437
 6.2.1 Conditions for Resource Deadlocks 438
 6.2.2 Deadlock Modeling 438

6.3 THE OSTRICH ALGORITHM 441

6.4 DEADLOCK DETECTION AND RECOVERY 442
 6.4.1 Deadlock Detection with One Resource of Each Type 442
 6.4.2 Deadlock Detection with Multiple Resources of Each Type 444
 6.4.3 Recovery from Deadlock 447

6.5 DEADLOCK AVOIDANCE 448
 6.5.1 Resource Trajectories 449
 6.5.2 Safe and Unsafe States 450
 6.5.3 The Banker's Algorithm for a Single Resource 451
 6.5.4 The Banker's Algorithm for Multiple Resources 452

6.6 DEADLOCK PREVENTION 454
 6.6.1 Attacking the Mutual Exclusion Condition 454
 6.6.2 Attacking the Hold and Wait Condition 455
 6.6.3 Attacking the No Preemption Condition 455
 6.6.4 Attacking the Circular Wait Condition 456

6.7 OTHER ISSUES 457
 6.7.1 Two-Phase Locking 457
 6.7.2 Communication Deadlocks 458
 6.7.3 Livelock 459
 6.7.4 Starvation 461

6.8 RESEARCH ON DEADLOCKS 461

6.9 SUMMARY 462
CONTENTS

7 MULTIMEDIA OPERATING SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>INTRODUCTION TO MULTIMEDIA</td>
<td>468</td>
</tr>
<tr>
<td>7.2</td>
<td>MULTIMEDIA FILES</td>
<td>472</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Video Encoding</td>
<td>473</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Audio Encoding</td>
<td>476</td>
</tr>
<tr>
<td>7.3</td>
<td>VIDEO COMPRESSION</td>
<td>478</td>
</tr>
<tr>
<td>7.3.1</td>
<td>The JPEG Standard</td>
<td>478</td>
</tr>
<tr>
<td>7.3.2</td>
<td>The MPEG Standard</td>
<td>481</td>
</tr>
<tr>
<td>7.4</td>
<td>AUDIO COMPRESSION</td>
<td>484</td>
</tr>
<tr>
<td>7.5</td>
<td>MULTIMEDIA PROCESS SCHEDULING</td>
<td>487</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Scheduling Homogeneous Processes</td>
<td>488</td>
</tr>
<tr>
<td>7.5.2</td>
<td>General Real-Time Scheduling</td>
<td>488</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Rate Monotonic Scheduling</td>
<td>490</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Earliest Deadline First Scheduling</td>
<td>491</td>
</tr>
<tr>
<td>7.6</td>
<td>MULTIMEDIA FILE SYSTEM PARADIGMS</td>
<td>493</td>
</tr>
<tr>
<td>7.6.1</td>
<td>VCR Control Functions</td>
<td>494</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Near Video on Demand</td>
<td>496</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Near Video on Demand with VCR Functions</td>
<td>498</td>
</tr>
<tr>
<td>7.7</td>
<td>FILE PLACEMENT</td>
<td>499</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Placing a File on a Single Disk</td>
<td>500</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Two Alternative File Organization Strategies</td>
<td>501</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Placing Files for Near Video on Demand</td>
<td>504</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Placing Multiple Files on a Single Disk</td>
<td>506</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Placing Files on Multiple Disks</td>
<td>508</td>
</tr>
<tr>
<td>7.8</td>
<td>CACHING</td>
<td>510</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Block Caching</td>
<td>511</td>
</tr>
<tr>
<td>7.8.2</td>
<td>File Caching</td>
<td>512</td>
</tr>
<tr>
<td>7.9</td>
<td>DISK SCHEDULING FOR MULTIMEDIA</td>
<td>513</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Static Disk Scheduling</td>
<td>513</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Dynamic Disk Scheduling</td>
<td>515</td>
</tr>
<tr>
<td>7.10</td>
<td>RESEARCH ON MULTIMEDIA</td>
<td>516</td>
</tr>
<tr>
<td>7.11</td>
<td>SUMMARY</td>
<td>517</td>
</tr>
</tbody>
</table>
8 MULTIPLE PROCESSOR SYSTEMS 523

8.1 MULTIPROCESSORS 526
 8.1.1 Multiprocessor Hardware 526
 8.1.2 Multiprocessor Operating System Types 534
 8.1.3 Multiprocessor Synchronization 538
 8.1.4 Multiprocessor Scheduling 542

8.2 MULTICOMPUTERS 548
 8.2.1 Multicomputer Hardware 549
 8.2.2 Low-Level Communication Software 553
 8.2.3 User-Level Communication Software 555
 8.2.4 Remote Procedure Call 558
 8.2.5 Distributed Shared Memory 560
 8.2.6 Multicomputer Scheduling 565
 8.2.7 Load Balancing 565

8.3 VIRTUALIZATION 568
 8.3.1 Requirements for Virtualization 570
 8.3.2 Type 1 Hypervisors 571
 8.3.3 Type 2 Hypervisors 572
 8.3.4 Paravirtualization 574
 8.3.5 Memory Virtualization 576
 8.3.6 I/O Virtualization 578
 8.3.7 Virtual Appliances 579
 8.3.8 Virtual Machines on Multicore CPUs 579
 8.3.9 Licensing Issues 580

8.4 DISTRIBUTED SYSTEMS 580
 8.4.1 Network Hardware 583
 8.4.2 Network Services and Protocols 586
 8.4.3 Document-Based Middleware 590
 8.4.4 File-System-Based Middleware 591
 8.4.5 Object-Based Middleware 596
 8.4.6 Coordination-Based Middleware 598
 8.4.7 Grids 603

8.5 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS 604

8.6 SUMMARY 605
CONTENTS

9 SECURITY

9.1 THE SECURITY ENVIRONMENT 613
 9.1.1 Threats 613
 9.1.2 Intruders 615
 9.1.3 Accidental Data Loss 616

9.2 BASICS OF CRYPTOGRAPHY 616
 9.2.1 Secret-Key Cryptography 617
 9.2.2 Public-Key Cryptography 618
 9.2.3 One-Way Functions 619
 9.2.4 Digital Signatures 619
 9.2.5 Trusted Platform Module 621

9.3 PROTECTION MECHANISMS 622
 9.3.1 Protection Domains 622
 9.3.2 Access Control Lists 624
 9.3.3 Capabilities 627
 9.3.4 Trusted Systems 630
 9.3.5 Trusted Computing Base 631
 9.3.6 Formal Models of Secure Systems 632
 9.3.7 Multilevel Security 634
 9.3.8 Covert Channels 637

9.4 AUTHENTICATION 641
 9.4.1 Authentication Using Passwords 642
 9.4.2 Authentication Using a Physical Object 651
 9.4.3 Authentication Using Biometrics 653

9.5 INSIDER ATTACKS 656
 9.5.1 Logic Bombs 656
 9.5.2 Trap Doors 657
 9.5.3 Login Spoofing 658

9.6 EXPLOITING CODE BUGS 659
 9.6.1 Buffer Overflow Attacks 660
 9.6.2 Format String Attacks 662
 9.6.3 Return to libc Attacks 664
 9.6.4 Integer Overflow Attacks 665
 9.6.5 Code Injection Attacks 666
 9.6.6 Privilege Escalation Attacks 667
CONTENTS

9.7 MALWARE 667
 9.7.1 Trojan Horses 670
 9.7.2 Viruses 672
 9.7.3 Worms 682
 9.7.4 Spyware 684
 9.7.5 Rootkits 688

9.8 DEFENSES 692
 9.8.1 Firewalls 693
 9.8.2 Antivirus and Anti-Antivirus Techniques 695
 9.8.3 Code Signing 701
 9.8.4 Jailing 702
 9.8.5 Model-Based Intrusion Detection 703
 9.8.6 Encapsulating Mobile Code 705
 9.8.7 Java Security 709

9.9 RESEARCH ON SECURITY 711

9.10 SUMMARY 712

10 CASE STUDY 1: LINUX

10.1 HISTORY OF UNIX AND LINUX 720
 10.1.1 UNICS 720
 10.1.2 PDP-11 UNIX 721
 10.1.3 Portable UNIX 722
 10.1.4 Berkeley UNIX 723
 10.1.5 Standard UNIX 724
 10.1.6 MINIX 725
 10.1.7 Linux 726

10.2 OVERVIEW OF LINUX 728
 10.2.1 Linux Goals 729
 10.2.2 Interfaces to Linux 730
 10.2.3 The Shell 731
 10.2.4 Linux Utility Programs 734
 10.2.5 Kernel Structure 736
10.3 PROCESSES IN LINUX 739
 10.3.1 Fundamental Concepts 739
 10.3.2 Process Management System Calls in Linux 741
 10.3.3 Implementation of Processes and Threads in Linux 745
 10.3.4 Scheduling in Linux 752
 10.3.5 Booting Linux 755

10.4 MEMORY MANAGEMENT IN LINUX 758
 10.4.1 Fundamental Concepts 758
 10.4.2 Memory Management System Calls in Linux 761
 10.4.3 Implementation of Memory Management in Linux 762
 10.4.4 Paging in Linux 768

10.5 INPUT/OUTPUT IN LINUX 771
 10.5.1 Fundamental Concepts 772
 10.5.2 Networking 773
 10.5.3 Input/Output System Calls in Linux 775
 10.5.4 Implementation of Input/Output in Linux 775
 10.5.5 Modules in Linux 779

10.6 THE LINUX FILE SYSTEM 779
 10.6.1 Fundamental Concepts 780
 10.6.2 File System Calls in Linux 785
 10.6.3 Implementation of the Linux File System 788
 10.6.4 NFS: The Network File System 796

10.7 SECURITY IN LINUX 803
 10.7.1 Fundamental Concepts 803
 10.7.2 Security System Calls in Linux 805
 10.7.3 Implementation of Security in Linux 806

10.8 SUMMARY 806

11 CASE STUDY 2: WINDOWS VISTA 813

11.1 HISTORY OF WINDOWS VISTA 813
 11.1.1 1980s: MS-DOS 814
 11.1.2 1990s: MS-DOS-based Windows 815
 11.1.3 2000s: NT-based Windows 815
 11.1.4 Windows Vista 818
11.2 PROGRAMMING WINDOWS VISTA 819
 11.2.1 The Native NT Application Programming Interface 822
 11.2.2 The Win32 Application Programming Interface 825
 11.2.3 The Windows Registry 829

11.3 SYSTEM STRUCTURE 831
 11.3.1 Operating System Structure 832
 11.3.2 Booting Windows Vista 847
 11.3.3 Implementation of the Object Manager 848
 11.3.4 Subsystems, DLLs, and User-Mode Services 858

11.4 PROCESSES AND THREADS IN WINDOWS VISTA 861
 11.4.1 Fundamental Concepts 861
 11.4.2 Job, Process, Thread, and Fiber Management API Calls 866
 11.4.3 Implementation of Processes and Threads 871

11.5 MEMORY MANAGEMENT 879
 11.5.1 Fundamental Concepts 879
 11.5.2 Memory Management System Calls 884
 11.5.3 Implementation of Memory Management 885

11.6 CACHING IN WINDOWS VISTA 894

11.7 INPUT/OUTPUT IN WINDOWS VISTA 896
 11.7.1 Fundamental Concepts 897
 11.7.2 Input/Output API Calls 898
 11.7.3 Implementation of I/O 901

11.8 THE WINDOWS NT FILE SYSTEM 906
 11.8.1 Fundamental Concepts 907
 11.8.2 Implementation of the NT File System 908

11.9 SECURITY IN WINDOWS VISTA 918
 11.9.1 Fundamental Concepts 919
 11.9.2 Security API Calls 921
 11.9.3 Implementation of Security 922

11.10 SUMMARY 924
12 CASE STUDY 3: SYMBIAN OS

12.1 THE HISTORY OF SYMBIAN OS
12.1.1 Symbian OS Roots: Psion and EPOC
12.1.2 Symbian OS Version 6
12.1.3 Symbian OS Version 7
12.1.4 Symbian OS Today

12.2 AN OVERVIEW OF SYMBIAN OS
12.2.1 Object Orientation
12.2.2 Microkernel Design
12.2.3 The Symbian OS Nanokernel
12.2.4 Client/Server Resource Access
12.2.5 Features of a Larger Operating System
12.2.6 Communication and Multimedia

12.3 PROCESSES AND THREADS IN SYMBIAN OS
12.3.1 Threads and Nanothreads
12.3.2 Processes
12.3.3 Active Objects
12.3.4 Interprocess Communication

12.4 MEMORY MANAGEMENT
12.4.1 Systems with No Virtual Memory
12.4.2 How Symbian OS Addresses Memory

12.5 INPUT AND OUTPUT
12.5.1 Device Drivers
12.5.2 Kernel Extensions
12.5.3 Direct Memory Access
12.5.4 Special Case: Storage Media
12.5.5 Blocking I/O
12.5.6 Removable Media

12.6 STORAGE SYSTEMS
12.6.1 File Systems for Mobile Devices
12.6.2 Symbian OS File Systems
12.6.3 File System Security and Protection

12.7 SECURITY IN SYMBIAN OS
13 OPERATING SYSTEM DESIGN

13.1 THE NATURE OF THE DESIGN PROBLEM 960
13.1.1 Goals 960
13.1.2 Why Is It Hard to Design an Operating System? 961

13.2 INTERFACE DESIGN 963
13.2.1 Guiding Principles 963
13.2.2 Paradigms 965
13.2.3 The System Call Interface 968

13.3 IMPLEMENTATION 971
13.3.1 System Structure 971
13.3.2 Mechanism versus Policy 975
13.3.3 Orthogonality 976
13.3.4 Naming 977
13.3.5 Binding Time 978
13.3.6 Static versus Dynamic Structures 979
13.3.7 Top-Down versus Bottom-Up Implementation 980
13.3.8 Useful Techniques 981

13.4 PERFORMANCE 987
13.4.1 Why Are Operating Systems Slow? 987
13.4.2 What Should Be Optimized? 988
13.4.3 Space-Time Trade-offs 988
13.4.4 Caching 991
13.4.5 Hints 992
13.4.6 Exploiting Locality 993
13.4.7 Optimize the Common Case 993

13.5 PROJECT MANAGEMENT 994
13.5.1 The Mythical Man Month 994
13.5.2 Team Structure 995