Entropy and the Time Evolution of Macroscopic Systems

Walter T. Grandy, Jr.
Department of Physics and Astronomy
University of Wyoming

OXFORD UNIVERSITY PRESS
CONTENTS

Preface xi

1 Introduction

A review of the origins of entropy and classical thermodynamics, followed by a summary of 19th century attempts to explain these theories in terms of the underlying molecular constituents of macroscopic physical systems.

1.1 Heat 1
1.2 The emergence of entropy 3
1.3 Classical thermodynamics 5
1.4 Is there a deeper interpretation? 9

2 Some clarification from another direction

The origins of modern information theory are reviewed, along with the early links with physics.

2.1 Information and physics 18

3 The probability connection

A brief introduction to probability as logic, and development of the principle of maximum entropy as principally an algorithm of probability theory for the construction of prior probabilities in the presence of very general forms of information.

3.1 The principle of maximum entropy 26

4 Equilibrium statistical mechanics and thermodynamics

An application of the theoretical tools developed in Chapter 3 to macroscopic systems in thermal equilibrium, wherein the Gibbs variational principle is understood as defining the equilibrium state.

4.1 The meaning of maximum entropy 43
4.2 Fluctuations 51
4.3 A mischaracterization 55

5 The presumed extensivity of entropy

The requirement that entropy be an extensive function of extensive variables is examined in some detail, along with the possible connection to the indistinguishability of elementary particles.
6 Nonequilibrium states

The first extension of the maximum entropy principle to nonequilibrium states is made here, with applications to inhomogeneous systems. An initial contact with linear transport processes in simple fluids is also included.

6.1 The linear approximation
6.2 Simple fluids
6.3 A transport example
6.4 Inhomogeneous systems
6.5 Some reflection

7 Steady-state processes

Application to nonequilibrium stationary processes is made at this stage, with a focus on simple fluids.

7.1 Steady-state transport processes in simple fluids

8 Sources and time-dependent processes

A careful analysis of time evolution in macroscopic systems is carried out, along with a critique of the standard equation of motion for the density matrix. The practical difference between microscopic and macroscopic equations of motion and the necessary relation to external sources is recognized explicitly.

8.1 Equation of motion revisited

9 Thermal driving

The concept of thermal driving is introduced, wherein very general external sources going beyond simple mechanical and electrical forces are envisioned, from baseball bats to Bunsen burners. Elements of nonequilibrium thermodynamics are presented.

9.1 Nonequilibrium thermodynamics
9.2 Linear heating
9.3 A special case: linear dynamic response

10 Application to fluid dynamics

An interlude in which the previous theoretical developments are applied to the fluid dynamics of simple fluids and the derivation of their macroscopic equations of motion from statistical mechanics.

10.1 Hydrodynamic fluctuations
10.2 Fluid dynamics equations of motion
10.3 The onset of turbulence
Contents

10.4 Ultrasonic propagation 135
10.5 Correlations in nonequilibrium fluids 138

11 Irreversibility, relaxation, and the approach to equilibrium 142

Finally, the deep questions of the relation of entropy to these topics first raised in Chapter 1 are addressed and resolved satisfactorily.

11.1 Irreversibility 143
11.2 The second law 148
11.3 Is time asymmetry an issue? 150
11.4 Relaxation and the approach to equilibrium 152

12 Entropy production and dissipation rates 160

The story concludes with a discussion of topics of current research interest, with an emphasis on exposing various myths in the folklore.

12.1 The statistical mechanics formulation 167

Appendix A Perturbation theory 174

A mathematical exposition of the equations required to describe small departures from equilibrium.

A.1 Fluid equations of motion 178
A.2 Operator identities 179

Appendix B Dissipative currents and Galilean invariance 181

Microscopic expressions for dissipative currents in simple fluids are exhibited, and the Galilean invariance of statistical mechanics is discussed in some detail.

B.1 Galilean invariance 184

Appendix C Analytic continuation of covariance functions 189

A brief discussion of how the covariance or correlation functions are analytically continued into the complex plane so as to readily analyze their casual and dissipative properties.

References 193
Name Index 205
Subject Index 207