Edwin Kiel (Ed.)

Drive Solutions

Mechatronics for Production and Logistics

With 310 Figures and 51 Tables

Springer
Table of Contents

1 **Introduction** ... 1

2 **Industrial production and automation** 7
 2.1 How production and logistics systems are structured 7
 2.1.1 Goods produced .. 8
 2.1.2 Production quantities ... 8
 2.1.3 Production processes ... 13
 2.1.4 Distribution of goods .. 21
 2.2 Machines in production and logistics 25
 2.2.1 Production equipment .. 26
 2.2.2 Material flow systems ... 36
 2.3 Structure of automation systems 44
 2.3.1 Controls ... 47
 2.3.2 Actuators ... 57
 2.3.3 Sensors .. 60
 2.3.4 Visualisation and operation 62
 2.3.5 Communication systems 63
 2.3.6 Safety engineering ... 66

3 **The drive system and its components** 75
 3.1 Dimensioning of drives ... 77
 3.1.1 Linear and rotary motion 78
 3.1.2 Work, power and energy 79
 3.1.3 Mass inertia .. 80
 3.1.4 Use of a gearbox and load matching 80
 3.1.5 Friction .. 82
 3.1.6 Process forces .. 83
 3.1.7 Speed and torque of a motion sequence 84
 3.1.8 Elastic coupling of the load 87
 3.2 Operating conditions of drives 89
 3.2.1 Mains voltages and mains supply types 89
 3.2.2 Ambient conditions .. 94
 3.3 Motors .. 96
 3.3.1 How three-phase AC motors work 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Standard three-phase AC motors</td>
<td>102</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Asynchronous and synchronous servo motors</td>
<td>108</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Linear motors and direct drives</td>
<td>114</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Operating limits of motors</td>
<td>118</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Angle and rotational speed sensors</td>
<td>121</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Motor brakes</td>
<td>126</td>
</tr>
<tr>
<td>3.4</td>
<td>Inverter</td>
<td>139</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Power conversion</td>
<td>141</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Mechanical layout</td>
<td>157</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Control electronics and software</td>
<td>161</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Drive control</td>
<td>164</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Motion control</td>
<td>173</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Communication systems in inverters</td>
<td>179</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Safety functions in inverters</td>
<td>185</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Electromagnetic compatibility</td>
<td>191</td>
</tr>
<tr>
<td>3.5</td>
<td>Gearboxes</td>
<td>201</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Application areas and designs</td>
<td>201</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Helical gearboxes</td>
<td>205</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Planetary gearboxes</td>
<td>207</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Bevel gearboxes</td>
<td>208</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Worm gearboxes</td>
<td>210</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Combining gearboxes with motors</td>
<td>211</td>
</tr>
<tr>
<td>3.6</td>
<td>Drive elements</td>
<td>213</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Clutches</td>
<td>215</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Couplings</td>
<td>216</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Shaft/hub connections</td>
<td>220</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Bearings</td>
<td>222</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Traction drives</td>
<td>223</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Linear transmission components</td>
<td>225</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Non-linear mechanisms</td>
<td>230</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Guidance systems</td>
<td>233</td>
</tr>
<tr>
<td>3.7</td>
<td>Overall set-up of the drive system</td>
<td>235</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Selecting the components</td>
<td>235</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Drive component dimensioning</td>
<td>238</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Optimisation of motion profiles</td>
<td>242</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Oscillatory loads</td>
<td>244</td>
</tr>
<tr>
<td>3.8</td>
<td>Reliability of drive systems</td>
<td>246</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Service life curve</td>
<td>248</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Basis of calculation</td>
<td>249</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Reliability of mechatronic drive technology</td>
<td>250</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Reliability concepts during product development</td>
<td>251</td>
</tr>
</tbody>
</table>
4 Mechatronic drive solutions ... 257
 4.1 Conveyor drives .. 259
 4.1.1 Conveying process .. 259
 4.1.2 Mechanical design of conveyor systems 262
 4.1.3 Drive systems for conveyors 272
 4.2 Travelling drives .. 276
 4.2.1 Travelling process ... 276
 4.2.2 Material flow systems with travelling drives 277
 4.2.3 Drive systems for travelling drives 281
 4.3 Hoist drives ... 292
 4.3.1 The lifting process .. 292
 4.3.2 Mechanical design of hoists 293
 4.3.3 Hoist drive systems ... 299
 4.4 Positioning drives .. 310
 4.4.1 The positioning process 310
 4.4.2 Mechanical structure of positioning systems 312
 4.4.3 Drive systems for positioning 313
 4.5 Coordinated drives for robots ... 324
 4.5.1 The technological process of handling 325
 4.5.2 Application fields for robots 326
 4.5.3 Mechanical structure of robots 328
 4.5.4 Drive systems for robots 333
 4.6 Synchronised drives .. 337
 4.6.1 Technological processes 338
 4.6.2 Machine types in processing lines 339
 4.6.3 Mechanical transmission elements in processing lines ... 348
 4.6.4 Drive systems for synchronised drives 350
 4.7 Winding drives .. 357
 4.7.1 Applications of winding drives 358
 4.7.2 Machine types and drive elements for winders 361
 4.7.3 Drive systems for winding drives 367
 4.8 Intermittent drives for cross cutters and flying saws 378
 4.8.1 Application of cross cutters and flying saws 379
 4.8.2 Structure of cross cutters and flying saws 381
 4.8.3 Drive systems for cross cutters and flying saws 387
 4.9 Drives for electronic cams ... 389
 4.9.1 Applications with cam drives 390
 4.9.2 Operating principle of cam mechanisms 391
 4.9.3 Drive systems for electronic cams 395
 4.10 Drives for forming processes 405
 4.10.1 Forming processes .. 405
 4.10.2 Machine types for forming processes 411
4.10.3 Drive systems for forming processes .. 416
4.11 Main drives and tool drives .. 418
 4.11.1 Applications for main drives and tool drives 419
 4.11.2 Machines with main drives and tool drives 420
 4.11.3 Drive systems for main drives and tool drives 422
4.12 Drives for pumps and fans .. 425
 4.12.1 Conveying and compressing fluids and gases 425
 4.12.2 Mechanical structure of pumps and fans 430
 4.12.3 Drive systems for pumps and fans 436
4.13 Examples of applications in production and logistics plants 441
 4.13.1 Newspaper production .. 441
 4.13.2 Production of laminate flooring 443
 4.13.3 Fruit juice production and filling 445
 4.13.4 Logistics centre of a supermarket chain 447
 4.13.5 Automotive production .. 449
 4.13.6 Distribution of the drive solutions 451
4.14 Development trends .. 453

5 Engineering and life cycle costs of drives 459
 5.1 Engineering of drive systems .. 459
 5.1.1 Selection and dimensioning of drives 460
 5.1.2 Configuration .. 469
 5.1.3 Commissioning .. 478
 5.1.4 Diagnostics and maintenance .. 479
 5.2 Life cycle costs in drive technology .. 482
 5.2.1 Definition of LCC and TCO .. 483
 5.2.2 Overview of LCC forcasting models 484
 5.2.3 Using drives to optimise life cycle costs 488
 5.2.4 Energy-saving drive concepts ... 494
 5.2.5 Comprehensive evaluation of drive systems 497

Glossary ... 499

List of symbols .. 509

Bibliography ... 511

Acknowledgements for illustrations appearing in this book 521

Index .. 525