SELF-ASSEMBLY AND NANOTECHNOLOGY
A Force Balance Approach

Yoon S. Lee
Scientific Information Analyst
Chemical Abstracts Service
A Division of the American Chemical Society
Columbus, Ohio
CONTENTS

Preface and Acknowledgments .. xv

PART I. SELF-ASSEMBLY .. 1

1. **UNIFIED APPROACH TO SELF-ASSEMBLY** 3
 1.1. Self-Assembly through Force Balance 5
 1.2. General Scheme for the Formation of Self-Assembled Aggregates 8
 1.3. General Scheme for Self-Assembly Process 10
 1.4. Concluding Remarks ... 17
 References ... 18

2. **INTERMOLECULAR AND COLLOIDAL FORCES** 21
 2.1. Van der Waals Force .. 22
 2.2. Electrostatic Force: Electric Double-Layer 28
 2.3. Steric and Depletion Forces 33
 2.4. Solvation and Hydration Forces
 2.4.1. Solvation Force 37
 2.4.2. Hydration Force .. 38
 2.5. Hydrophobic Effect .. 39
 2.6. Hydrogen Bond .. 42
 References ... 44

3. **MOLECULAR SELF-ASSEMBLY IN SOLUTION I: MICELLES** 47
 3.1. Surfactants and Micelles 48
 3.2. Physical Properties of Micelles 50
 3.2.1. Micellization ... 50
 3.2.2. Critical Micellar Concentration and Aggregation Number 51
 3.2.3. Counterion Binding 53
 References ... vii
3.3. Thermodynamics of Micellization 53
 3.3.1. Mass-Action Model 54
 3.3.2. Pseudo-phase Separation Model 55
 3.3.3. Hydrophobic Effect and Enthalpy–Entropy Compensation 57
3.4. Micellization versus General Scheme of Self-Assembly 58
 3.4.1. Change of Micelle Structures 58
 3.4.2. General Scheme of Micellization 60
 3.4.3. Concept of Force Balance and Surfactant Packing Parameter 60
3.5. Multicomponent Micelles 63
3.6. Micellar Solubilization 66
3.7. Applications of Surfactants and Micelles 68
 3.7.1. Micellar Catalysis 69
References 71

4. MOLECULAR SELF-ASSEMBLY IN SOLUTION II: BILAYERS, LIQUID CRYSTALS, AND EMULSIONS 75
 4.1. Bilayers 76
 4.1.1. Bilayer-Forming Surfactants 76
 4.1.2. Bilayerization 77
 4.1.3. Physical Properties of Bilayers 79
 4.2. Vesicles, Liposomes, and Niosomes 80
 4.2.1. Physical Properties of Vesicles 80
 4.2.2. Micellar Catalysis on Vesicles 82
 4.3. Liquid Crystals 83
 4.3.1. Thermotropic Liquid Crystals 84
 4.3.2. Lyotropic Liquid Crystals 87
 4.3.2.1. Concentration-Temperature Phase Diagram 87
 4.3.2.2. Ternary Surfactant–Water–Oil (or Co-surfactant) Phase Diagram 90
 4.4. Emulsions 92
 4.4.1. Microemulsions 93
 4.4.2. Reverse Micelles 95
 4.4.3. Macroemulsions 97
 4.4.4. Micellar Catalysis on Microemulsions 99
References 100

5. COLLOIDAL SELF-ASSEMBLY 103
 5.1. Forces Induced by Colloidal Phenomena 104
 5.1.1. Surface Tension and Capillarity 105
 5.1.2. Contact Angle and Wetting 108
PART II. NANOTECHNOLOGY

8. IMPLICATIONS OF SELF-ASSEMBLY FOR NANOTECHNOLOGY 173
8.1. General Concepts and Approach to Nanotechnology 173
8.2. Self-Assembly and Nanotechnology Share the Same Building Units 176
8.3. Self-Assembly and Nanotechnology Are Governed by the Same Forces 177
8.4. Self-Assembly versus Manipulation for the Construction of Nanostructures 177
8.5. Self-Aggregates and Nanotechnology Share the Same General Assembly Principles 178
8.6. Concluding Remarks 180
References 181

9. NANOSTRUCTURED MATERIALS 183
9.1. What Are Nanostructured Materials? 184
9.2. Intermolecular Forces During the Formation of Nanostructured Materials 185
9.3. Sol–Gel Chemistry 187
9.4. General Self-Assembly Schemes for the Formation of Nanostructured Materials 189
9.5. Micro-, Meso-, and Macroporous Materials 190
9.6. Mesostructured and Mesoporous Materials 192
9.6.1. Formation of Mesoporous Silica with Hexagonal Structure 193
9.6.2. Structural Control of Mesostructured and Mesoporous Materials 195
9.6.3. Epitaxial Analysis at the Micelle–Silica Interface 198
9.6.4. Charge Matching at the Micelle–Silica Interface 203
9.6.5. Characterization of Mesostructured and Mesoporous Materials 204
9.7. Organic–Inorganic Hybrid Mesostructured and Mesoporous Materials 205
9.8. Microporous and Macroporous Materials 206
9.8.2. Emulsions for the Formation of Macroporous Materials 209
9.8.3. Colloidal Self-Assembly for the Formation of Macroporous Materials 210
9.9. Applications of Nanostructured and Nanoporous Materials 211
9.10. Summary and Future Issues 214
References 216

10. NANOPARTICLES: METALS, SEMICONDUCTORS, AND OXIDES 221
10.1. What are Nanoparticles? 222
10.2. Intermolecular Forces During the Synthesis of Nanoparticles 224
10.3. Synthesis of Nanoparticles 226
10.3.1. Direct Synthesis: Confinement-by-Adsorption 227
10.3.2. Synthesis within Preformed Nanospace 229
10.3.2.1. Surfactant Self-Assembled Aggregates 230
10.3.2.2. Bio-mimetic Self-Assembled Aggregates 232
10.3.2.3. Dendritic Polymers 233
10.3.2.4. Nanoporous Solids 233
10.3.2.5. Directed Growth by Soft Epitaxy 234
10.3.2.6. Directed Growth by Hard Epitaxy 234
10.3.3. Nanoparticle Synthesis with Nonconventional Media 236
10.3.3.1. Supercritical Fluids 236
10.3.3.2. Ionic Liquids 237
10.4. Properties of Nanoparticles 238
10.4.1. Quantum Size Effect 238
10.4.1.1. Optical Properties of Semiconductors 238
10.4.1.2. Optical Properties of Noble Metals 240
10.4.1.3. Electromagnetic Properties of Noble Metals 240
10.4.1.4. Electric Properties of Metals 241
10.4.2. Surface Atom Effect 241
10.5. Applications of Nanoparticles 243
10.5.1. Chemical and Biological Sensors 243
10.5.2. Optical Sensors 244
10.5.3. Nanocomposites and Hybrid Materials 245
11. NANOSTRUCTURED FILMS 249
11.1. What Is Nanostructured Film? 249
11.2. General Scheme for Nanostructured Films 251
11.3. Preparation and Structural Control of Nanostructured Films 252
 11.3.1. Self-Assembled Monolayer (SAM) 252
 11.3.2. Layer-by-Layer Assembly 255
 11.3.3. Vapor-Deposited Films 256
 11.3.4. Sol–Gel Processed Films 258
 11.3.5. Langmuir-Blodgett (LB) Films 259
11.4. Properties and Applications of Nanostructured Films 263
 11.4.1. Nanoporous Films 263
 11.4.2. Nanolayered Films 263
 11.4.3. Nanopatterned Films 264
 11.4.4. Monolayer: Model Membrane 265
11.5. Summary and Future Issues 266
References 267

12. NANOASSEMBLY BY EXTERNAL FORCES 271
12.1. Force Balance and the General Scheme of Self-Assembly Under External Forces 272
12.2. Colloidal Self-Assembly Under External Forces 273
 12.2.1. Capillary Force 273
 12.2.2. Electric Force 275
 12.2.3. Magnetic Force 277
 12.2.4. Flow 278
 12.2.5. Mechanical Force 279
 12.2.6. Force by Spatial Confinement 280
 12.2.7. Other Forces 282
 12.2.7.1. Laser-Optical Force 282
 12.2.7.2. Ultrasound 282
 12.2.7.3. Gravity and Centrifugal Forces 282
12.3. Molecular Self-Assembly Under External Forces 283
 12.3.1. Flow 283
 12.3.2. Magnetic Field 285
 12.3.3. Concentration Gradient 285
 12.3.4. Confinement 286
 12.3.5. Gravity and Centrifugal Forces 287