ANTENNAS AND
WAVE PROPAGATION

A.R. HARISH
Assistant Professor
Department of Electrical Engineering
Indian Institute of Technology Kanpur

M. SACHIDANANDA
Professor
Department of Electrical Engineering
Indian Institute of Technology Kanpur
Contents

Preface
Symbols

CHAPTER 1 Electromagnetic Radiation
Introduction
1.1 Review of Electromagnetic Theory
 1.1.1 Vector Potential Approach
 1.1.2 Solution of the Wave Equation
 1.1.3 Solution Procedure
1.2 Hertzian Dipole
Exercises

CHAPTER 2 Antenna Characteristics
Introduction
2.1 Radiation Pattern
2.2 Beam Solid Angle, Directivity, and Gain
2.3 Input Impedance
2.4 Polarization
 2.4.1 Linear Polarization
 2.4.2 Circular Polarization
 2.4.3 Elliptical Polarization
2.5 Bandwidth
2.6 Receiving Antenna
 2.6.1 Reciprocity 60
 2.6.2 Equivalence of Radiation and Receive Patterns 66
 2.6.3 Equivalence of Impedances 67
 2.6.4 Effective Aperture 68
 2.6.5 Vector Effective Length 73
 2.6.6 Antenna Temperature 80

2.7 Wireless Systems and Friis Transmission Formula 85

Exercises 90

CHAPTER 3 Wire Antennas 94
 Introduction 94

3.1 Short Dipole 94
 3.1.1 Radiation Resistance and Directivity 103

3.2 Half-wave Dipole 106

3.3 Monopole 115

3.4 Small Loop Antenna 117
 Exercises 127

CHAPTER 4 Aperture Antennas 129
 Introduction 129

4.1 Magnetic Current and its Fields 130

4.2 Some Theorems and Principles 133
 4.2.1 Uniqueness Theorem 134
 4.2.2 Field Equivalence Principle 134
 4.2.3 Duality Principle 136
 4.2.4 Method of Images 137

4.3 Sheet Current Distribution in Free Space 139
 4.3.1 Pattern Properties 143
 4.3.2 Radiation Pattern as a Fourier Transform of the Current Distribution 149

4.4 Expressions for a General Current Distribution 154

4.5 Aperture in a Conducting Screen 155

4.6 Slot Antenna 158
4.7 Open-ended Waveguide Radiator

4.8 Horn Antenna

4.9 Pyramidal Horn Antenna

4.10 Reflector Antenna
 4.10.1 Flat-plate Reflector
 4.10.2 Corner Reflector
 4.10.3 Common Curved Reflector Shapes

Exercises

CHAPTER 5 Antenna Arrays

Introduction

5.1 Linear Array and Pattern Multiplication

5.2 Two-element Array

5.3 Uniform Array
 5.3.1 Polynomial Representation

5.4 Array with Non-uniform Excitation
 5.4.1 Binomial Array
 5.4.2 Chebyshev Array Synthesis

Exercises

CHAPTER 6 Special Antennas

Introduction

6.1 Monopole and Dipole Antennas
 6.1.1 Monopole for MF and HF Applications
 6.1.2 Monopole at VHF
 6.1.3 Antenna for Wireless Local Area Network Application

6.2 Long Wire, V, and Rhombic Antennas
 6.2.1 V Antenna

6.3 Yagi–Uda array

6.4 Turnstile Antenna
 6.4.1 Batwing and Super-turnstile Antennas

6.5 Helical Antenna
 6.5.1 Axial Mode Helix
 6.5.2 Normal Mode Helix
6.6 Biconical Antenna 283
6.7 Log-periodic Dipole Array 285
 6.7.1 Design Procedure 290
6.8 Spiral Antenna 295
6.9 Microstrip Patch Antenna 298

Exercises 302

CHAPTER 7 Antenna Measurements 303

 Introduction 303
7.1 Antenna Measurement Range 304
7.2 Radiation: Pattern Measurement 314
 7.2.1 Antenna Positioner 315
 7.2.2 Receiver Instrumentation 318
7.3 Gain and Directivity 319
 7.3.1 Absolute Gain Measurement 320
 7.3.2 Gain Transfer Method 323
 7.3.3 Directivity 324
7.4 Polarization 324
7.5 Input Impedance and Input Reflection Coefficient 328

Exercises 329

CHAPTER 8 Radio Wave Propagation 330

 Introduction 330
8.1 Ground Wave Propagation 332
 8.1.1 Free Space Propagation 333
 8.1.2 Ground Reflection 334
 8.1.3 Surface Waves 339
 8.1.4 Diffraction 341
 8.1.5 Wave Propagation in Complex Environments 344
 8.1.6 Tropospheric Propagation 348
 8.1.7 Tropospheric Scatter 360
8.2 Ionospheric Propagation 364
 8.2.1 Electrical Properties of the Ionosphere 367
 8.2.2 Effect of Earth’s Magnetic Field 378

Exercises 380
<table>
<thead>
<tr>
<th>Contents</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A Trigonometric Formulae</td>
<td>383</td>
</tr>
<tr>
<td>Appendix B Integration Formulae</td>
<td>385</td>
</tr>
<tr>
<td>Appendix C Series Expansions</td>
<td>387</td>
</tr>
<tr>
<td>Appendix D Vector Identities</td>
<td>389</td>
</tr>
<tr>
<td>Appendix E Coordinate Systems and Vector Differential Operators</td>
<td>390</td>
</tr>
<tr>
<td>Appendix F Coordinate Transformations</td>
<td>393</td>
</tr>
<tr>
<td>Appendix G The (\frac{\sin x}{x}) Function</td>
<td>395</td>
</tr>
<tr>
<td>References</td>
<td>397</td>
</tr>
<tr>
<td>Index</td>
<td>399</td>
</tr>
</tbody>
</table>