Contents

Editor's foreword
Preface

Part I Principles and elementary applications
1 Plausible reasoning
 1.1 Deductive and plausible reasoning
 1.2 Analogies with physical theories
 1.3 The thinking computer
 1.4 Introducing the robot
 1.5 Boolean algebra
 1.6 Adequate sets of operations
 1.7 The basic desiderata
 1.8 Comments
 1.8.1 Common language vs. formal logic
 1.8.2 Nitpicking
2 The quantitative rules
 2.1 The product rule
 2.2 The sum rule
 2.3 Qualitative properties
 2.4 Numerical values
 2.5 Notation and finite-sets policy
 2.6 Comments
 2.6.1 ‘Subjective’ vs. ‘objective’
 2.6.2 Gödel’s theorem
 2.6.3 Venn diagrams
 2.6.4 The ‘Kolmogorov axioms’
3 Elementary sampling theory
 3.1 Sampling without replacement
 3.2 Logic vs. propensity
 3.3 Reasoning from less precise information
 3.4 Expectations
 3.5 Other forms and extensions

page xvii
xix
Contents

6.5 Truncated uniform priors 157
6.6 A concave prior 158
6.7 The binomial monkey prior 160
6.8 Metamorphosis into continuous parameter estimation 163
6.9 Estimation with a binomial sampling distribution 163
 6.9.1 Digression on optional stopping 166
6.10 Compound estimation problems 167
6.11 A simple Bayesian estimate: quantitative prior information 168
 6.11.1 From posterior distribution function to estimate 172
6.12 Effects of qualitative prior information 177
6.13 Choice of a prior 178
6.14 On with the calculation! 179
6.15 The Jeffreys prior 181
6.16 The point of it all 183
6.17 Interval estimation 186
6.18 Calculation of variance 186
6.19 Generalization and asymptotic forms 188
6.20 Rectangular sampling distribution 190
6.21 Small samples 192
6.22 Mathematical trickery 193
6.23 Comments 195

7 The central, Gaussian or normal distribution 198
 7.1 The gravitating phenomenon 199
 7.2 The Herschel–Maxwell derivation 200
 7.3 The Gauss derivation 202
 7.4 Historical importance of Gauss’s result 203
 7.5 The Landon derivation 205
 7.6 Why the ubiquitous use of Gaussian distributions? 207
 7.7 Why the ubiquitous success? 210
 7.8 What estimator should we use? 211
 7.9 Error cancellation 213
 7.10 The near irrelevance of sampling frequency distributions 215
 7.11 The remarkable efficiency of information transfer 216
 7.12 Other sampling distributions 218
 7.13 Nuisance parameters as safety devices 219
 7.14 More general properties 220
 7.15 Convolution of Gaussians 221
 7.16 The central limit theorem 222
 7.17 Accuracy of computations 224
 7.18 Galton’s discovery 227
 7.19 Population dynamics and Darwinian evolution 229
 7.20 Evolution of humming-birds and flowers 231
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.21</td>
<td>Application to economics</td>
<td>233</td>
</tr>
<tr>
<td>7.22</td>
<td>The great inequality of Jupiter and Saturn</td>
<td>234</td>
</tr>
<tr>
<td>7.23</td>
<td>Resolution of distributions into Gaussians</td>
<td>235</td>
</tr>
<tr>
<td>7.24</td>
<td>Hermite polynomial solutions</td>
<td>236</td>
</tr>
<tr>
<td>7.25</td>
<td>Fourier transform relations</td>
<td>238</td>
</tr>
<tr>
<td>7.26</td>
<td>There is hope after all</td>
<td>239</td>
</tr>
<tr>
<td>7.27</td>
<td>Comments</td>
<td>240</td>
</tr>
<tr>
<td>7.27.1</td>
<td>Terminology again</td>
<td>240</td>
</tr>
<tr>
<td>8</td>
<td>Sufficiency, ancillarity, and all that</td>
<td>243</td>
</tr>
<tr>
<td>8.1</td>
<td>Sufficiency</td>
<td>243</td>
</tr>
<tr>
<td>8.2</td>
<td>Fisher sufficiency</td>
<td>245</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Examples</td>
<td>246</td>
</tr>
<tr>
<td>8.2.2</td>
<td>The Blackwell–Rao theorem</td>
<td>247</td>
</tr>
<tr>
<td>8.3</td>
<td>Generalized sufficiency</td>
<td>248</td>
</tr>
<tr>
<td>8.4</td>
<td>Sufficiency plus nuisance parameters</td>
<td>249</td>
</tr>
<tr>
<td>8.5</td>
<td>The likelihood principle</td>
<td>250</td>
</tr>
<tr>
<td>8.6</td>
<td>Ancillarity</td>
<td>253</td>
</tr>
<tr>
<td>8.7</td>
<td>Generalized ancillary information</td>
<td>254</td>
</tr>
<tr>
<td>8.8</td>
<td>Asymptotic likelihood: Fisher information</td>
<td>256</td>
</tr>
<tr>
<td>8.9</td>
<td>Combining evidence from different sources</td>
<td>257</td>
</tr>
<tr>
<td>8.10</td>
<td>Pooling the data</td>
<td>260</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Fine-grained propositions</td>
<td>261</td>
</tr>
<tr>
<td>8.11</td>
<td>Sam’s broken thermometer</td>
<td>262</td>
</tr>
<tr>
<td>8.12</td>
<td>Comments</td>
<td>264</td>
</tr>
<tr>
<td>8.12.1</td>
<td>The fallacy of sample re-use</td>
<td>264</td>
</tr>
<tr>
<td>8.12.2</td>
<td>A folk theorem</td>
<td>266</td>
</tr>
<tr>
<td>8.12.3</td>
<td>Effect of prior information</td>
<td>267</td>
</tr>
<tr>
<td>8.12.4</td>
<td>Clever tricks and gamesmanship</td>
<td>267</td>
</tr>
<tr>
<td>9</td>
<td>Repetitive experiments: probability and frequency</td>
<td>270</td>
</tr>
<tr>
<td>9.1</td>
<td>Physical experiments</td>
<td>271</td>
</tr>
<tr>
<td>9.2</td>
<td>The poorly informed robot</td>
<td>274</td>
</tr>
<tr>
<td>9.3</td>
<td>Induction</td>
<td>276</td>
</tr>
<tr>
<td>9.4</td>
<td>Are there general inductive rules?</td>
<td>277</td>
</tr>
<tr>
<td>9.5</td>
<td>Multiplicity factors</td>
<td>280</td>
</tr>
<tr>
<td>9.6</td>
<td>Partition function algorithms</td>
<td>281</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Solution by inspection</td>
<td>282</td>
</tr>
<tr>
<td>9.7</td>
<td>Entropy algorithms</td>
<td>285</td>
</tr>
<tr>
<td>9.8</td>
<td>Another way of looking at it</td>
<td>289</td>
</tr>
<tr>
<td>9.9</td>
<td>Entropy maximization</td>
<td>290</td>
</tr>
<tr>
<td>9.10</td>
<td>Probability and frequency</td>
<td>292</td>
</tr>
<tr>
<td>9.11</td>
<td>Significance tests</td>
<td>293</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Implied alternatives</td>
<td>296</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.12</td>
<td>Comparison of psi and chi-squared</td>
<td>300</td>
</tr>
<tr>
<td>9.13</td>
<td>The chi-squared test</td>
<td>302</td>
</tr>
<tr>
<td>9.14</td>
<td>Generalization</td>
<td>304</td>
</tr>
<tr>
<td>9.15</td>
<td>Halley’s mortality table</td>
<td>305</td>
</tr>
<tr>
<td>9.16</td>
<td>Comments</td>
<td>310</td>
</tr>
<tr>
<td>9.16.1</td>
<td>The irrationalists</td>
<td>310</td>
</tr>
<tr>
<td>9.16.2</td>
<td>Superstitions</td>
<td>312</td>
</tr>
<tr>
<td>10</td>
<td>Physics of ‘random experiments’</td>
<td>314</td>
</tr>
<tr>
<td>10.1</td>
<td>An interesting correlation</td>
<td>314</td>
</tr>
<tr>
<td>10.2</td>
<td>Historical background</td>
<td>315</td>
</tr>
<tr>
<td>10.3</td>
<td>How to cheat at coin and die tossing</td>
<td>317</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Experimental evidence</td>
<td>320</td>
</tr>
<tr>
<td>10.4</td>
<td>Bridge hands</td>
<td>321</td>
</tr>
<tr>
<td>10.5</td>
<td>General random experiments</td>
<td>324</td>
</tr>
<tr>
<td>10.6</td>
<td>Induction revisited</td>
<td>326</td>
</tr>
<tr>
<td>10.7</td>
<td>But what about quantum theory?</td>
<td>327</td>
</tr>
<tr>
<td>10.8</td>
<td>Mechanics under the clouds</td>
<td>329</td>
</tr>
<tr>
<td>10.9</td>
<td>More on coins and symmetry</td>
<td>331</td>
</tr>
<tr>
<td>10.10</td>
<td>Independence of tosses</td>
<td>335</td>
</tr>
<tr>
<td>10.11</td>
<td>The arrogance of the uninformed</td>
<td>338</td>
</tr>
<tr>
<td>11</td>
<td>Discrete prior probabilities: the entropy principle</td>
<td>343</td>
</tr>
<tr>
<td>11.1</td>
<td>A new kind of prior information</td>
<td>343</td>
</tr>
<tr>
<td>11.2</td>
<td>Minimum $\sum p_i^2$</td>
<td>345</td>
</tr>
<tr>
<td>11.3</td>
<td>Entropy: Shannon’s theorem</td>
<td>346</td>
</tr>
<tr>
<td>11.4</td>
<td>The Wallis derivation</td>
<td>351</td>
</tr>
<tr>
<td>11.5</td>
<td>An example</td>
<td>354</td>
</tr>
<tr>
<td>11.6</td>
<td>Generalization: a more rigorous proof</td>
<td>355</td>
</tr>
<tr>
<td>11.7</td>
<td>Formal properties of maximum entropy distributions</td>
<td>358</td>
</tr>
<tr>
<td>11.8</td>
<td>Conceptual problems – frequency correspondence</td>
<td>365</td>
</tr>
<tr>
<td>11.9</td>
<td>Comments</td>
<td>370</td>
</tr>
<tr>
<td>12</td>
<td>Ignorance priors and transformation groups</td>
<td>372</td>
</tr>
<tr>
<td>12.1</td>
<td>What are we trying to do?</td>
<td>372</td>
</tr>
<tr>
<td>12.2</td>
<td>Ignorance priors</td>
<td>374</td>
</tr>
<tr>
<td>12.3</td>
<td>Continuous distributions</td>
<td>374</td>
</tr>
<tr>
<td>12.4</td>
<td>Transformation groups</td>
<td>378</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Location and scale parameters</td>
<td>378</td>
</tr>
<tr>
<td>12.4.2</td>
<td>A Poisson rate</td>
<td>382</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Unknown probability for success</td>
<td>382</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Bertrand’s problem</td>
<td>386</td>
</tr>
<tr>
<td>12.5</td>
<td>Comments</td>
<td>394</td>
</tr>
</tbody>
</table>
13 Decision theory, historical background 397
 13.1 Inference vs. decision 397
 13.2 Daniel Bernoulli's suggestion 398
 13.3 The rationale of insurance 400
 13.4 Entropy and utility 402
 13.5 The honest weatherman 402
 13.6 Reactions to Daniel Bernoulli and Laplace 404
 13.7 Wald's decision theory 406
 13.8 Parameter estimation for minimum loss 410
 13.9 Reformulation of the problem 412
 13.10 Effect of varying loss functions 415
 13.11 General decision theory 417
 13.12 Comments 418
 13.12.1 'Objectivity' of decision theory 418
 13.12.2 Loss functions in human society 421
 13.12.3 A new look at the Jeffreys prior 423
 13.12.4 Decision theory is not fundamental 423
 13.12.5 Another dimension? 424
14 Simple applications of decision theory 426
 14.1 Definitions and preliminaries 426
 14.2 Sufficiency and information 428
 14.3 Loss functions and criteria of optimum performance 430
 14.4 A discrete example 432
 14.5 How would our robot do it? 437
 14.6 Historical remarks 438
 14.6.1 The classical matched filter 439
 14.7 The widget problem 440
 14.7.1 Solution for Stage 2 443
 14.7.2 Solution for Stage 3 445
 14.7.3 Solution for Stage 4 449
 14.8 Comments 450
15 Paradoxes of probability theory 451
 15.1 How do paradoxes survive and grow? 451
 15.2 Summing a series the easy way 452
 15.3 Nonconglomerability 453
 15.4 The tumbling tetrahedra 456
 15.5 Solution for a finite number of tosses 459
 15.6 Finite vs. countable additivity 464
 15.7 The Borel–Kolmogorov paradox 467
 15.8 The marginalization paradox 470
 15.8.1 On to greater disasters 474
15.9 Discussion
 15.9.1 The DSZ Example #5 480
 15.9.2 Summary 483
15.10 A useful result after all? 484
15.11 How to mass-produce paradoxes 485
15.12 Comments 486

16 Orthodox methods: historical background
 16.1 The early problems 490
 16.2 Sociology of orthodox statistics 492
 16.3 Ronald Fisher, Harold Jeffreys, and Jerzy Neyman 493
 16.4 Pre-data and post-data considerations 499
 16.5 The sampling distribution for an estimator 500
 16.6 Pro-causal and anti-causal bias 503
 16.7 What is real, the probability or the phenomenon? 505
 16.8 Comments 506
 16.8.1 Communication difficulties 507

17 Principles and pathology of orthodox statistics
 17.1 Information loss 510
 17.2 Unbiased estimators 511
 17.3 Pathology of an unbiased estimate 516
 17.4 The fundamental inequality of the sampling variance 518
 17.5 Periodicity: the weather in Central Park 520
 17.5.1 The folly of pre-filtering data 521
 17.6 A Bayesian analysis 527
 17.7 The folly of randomization 531
 17.8 Fisher: common sense at Rothamsted
 17.8.1 The Bayesian safety device 532
 17.9 Missing data 533
 17.10 Trend and seasonality in time series 534
 17.10.1 Orthodox methods 535
 17.10.2 The Bayesian method 536
 17.10.3 Comparison of Bayesian and orthodox estimates 540
 17.10.4 An improved orthodox estimate 541
 17.10.5 The orthodox criterion of performance 544
 17.11 The general case 545
 17.12 Comments 550

18 The A_p distribution and rule of succession
 18.1 Memory storage for old robots 553
 18.2 Relevance 555
 18.3 A surprising consequence 557
 18.4 Outer and inner robots 559
18.5 An application 561
18.6 Laplace's rule of succession 563
18.7 Jeffreys' objection 566
18.8 Bass or carp? 567
18.9 So where does this leave the rule? 568
18.10 Generalization 568
18.11 Confirmation and weight of evidence 571
 18.11.1 Is indifference based on knowledge or ignorance? 573
18.12 Carnap's inductive methods 574
18.13 Probability and frequency in exchangeable sequences 576
18.14 Prediction of frequencies 576
18.15 One-dimensional neutron multiplication 579
 18.15.1 The frequentist solution 579
 18.15.2 The Laplace solution 581
18.16 The de Finetti theorem 586
18.17 Comments 588
19 Physical measurements 589
 19.1 Reduction of equations of condition 589
 19.2 Reformulation as a decision problem 592
 19.2.1 Sermon on Gaussian error distributions 592
 19.3 The underdetermined case: K is singular 594
 19.4 The overdetermined case: K can be made nonsingular 595
 19.5 Numerical evaluation of the result 596
 19.6 Accuracy of the estimates 597
 19.7 Comments 599
 19.7.1 A paradox 599
20 Model comparison 601
 20.1 Formulation of the problem 602
 20.2 The fair judge and the cruel realist 603
 20.2.1 Parameters known in advance 604
 20.2.2 Parameters unknown 604
 20.3 But where is the idea of simplicity? 605
 20.4 An example: linear response models 607
 20.4.1 Digression: the old sermon still another time 608
 20.5 Comments 613
 20.5.1 Final causes 614
21 Outliers and robustness 615
 21.1 The experimenter's dilemma 615
 21.2 Robustness 617
 21.3 The two-model model 619
 21.4 Exchangeable selection 620
 21.5 The general Bayesian solution 622
Contents

21.6 Pure outliers 624
21.7 One receding datum 625

22 Introduction to communication theory 627
 22.1 Origins of the theory 627
 22.2 The noiseless channel 628
 22.3 The information source 634
 22.4 Does the English language have statistical properties? 636
 22.5 Optimum encoding: letter frequencies known 638
 22.6 Better encoding from knowledge of digram frequencies 641
 22.7 Relation to a stochastic model 644
 22.8 The noisy channel 648

Appendix A Other approaches to probability theory 651
 A.1 The Kolmogorov system of probability 651
 A.2 The de Finetti system of probability 655
 A.3 Comparative probability 656
 A.4 Holdouts against universal comparability 658
 A.5 Speculations about lattice theories 659

Appendix B Mathematical formalities and style 661
 B.1 Notation and logical hierarchy 661
 B.2 Our ‘cautious approach’ policy 662
 B.3 Willy Feller on measure theory 663
 B.4 Kronecker vs. Weierstrasz 665
 B.5 What is a legitimate mathematical function? 666
 B.5.1 Delta-functions 668
 B.5.2 Nondifferentiable functions 668
 B.5.3 Bogus nondifferentiable functions 669
 B.6 Counting infinite sets? 671
 B.7 The Hausdorff sphere paradox and mathematical diseases 672
 B.8 What am I supposed to publish? 674
 B.9 Mathematical courtesy 675

Appendix C Convolutions and cumulants 677
 C.1 Relation of cumulants and moments 679
 C.2 Examples 680

References 683
Bibliography 705
Author index 721
Subject index 724