Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xvi</td>
</tr>
<tr>
<td>Contributors</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

Part I: Enhancement
Rangaraj M. Rangayyan

Chapter 1
Fundamental Enhancement Techniques
Raman B. Paranjape

1.1 Introduction
1.2 Preliminaries and Definitions
1.3 Pixel Operations
1.4 Local Operators
1.5 Operations with Multiple Images
1.6 Frequency Domain Techniques
1.7 Concluding Remarks
1.8 References

Chapter 2
Adaptive Image Filtering
Carl-Fredrik Westin, Hans Knutsson, and Ron Kikinis

2.1 Introduction
2.2 Multidimensional Spatial Frequencies and Filtering
2.3 Random Fields and Wiener Filtering
2.4 Adaptive Wiener Filters
2.5 Anisotropic Adaptive Filtering
2.6 References

Chapter 3
Enhancement by Multiscale Nonlinear Operators
Andrew Laine, and Walter Huda

3.1 Introduction
3.2 One-Dimensional Discrete Dyadic Wavelet Transform
3.3 Linear Enhancement and Unsharp Masking
3.4 Nonlinear Enhancement by Functional Mapping
3.5 A Method for Combined Denoising and Enhancement
3.6 Two-Dimensional Extension
3.7 Experimental Results and Comparison
3.8 Conclusion
3.9 References

Chapter 4
Medical Image Enhancement Using Fourier Descriptors and Hybrid Filters
Minshan Lei, Dansheng Song, Yudong Yao, Ravi Sankar, Ehsan Sheybani, and Wei Qian

4.1 Introduction
4.2 Design of the Hybrid Filter
4.3 Experimental Results
4.4 Discussion and Conclusion
4.5 References

Part II: Segmentation
Isaac N. Bankman

Chapter 5
Overview and Fundamentals of Medical Image Segmentation
Jadwiga Rogowska

5.1 Introduction
5.2 Thresholding
Chapter 6 Image Segmentation by Fuzzy Clustering: Methods and Issues Melanie A. Sutton
6.1 Introduction
6.2 The Quantitative Basis of Fuzzy Image Segmentation
6.3 Qualitative Discussion of a Few Fuzzy Image Segmentation Methods
6.4 Conclusions and Discussion
6.5 References

Chapter 7 Segmentation with Neural Networks Axel Wismueller
7.1 Introduction
7.2 Structure and Function of the GRBF Network
7.3 Training Procedure
7.4 Application to Medical Image Segmentation
7.5 Image Data
7.6 Preprocessing
7.7 Vector Quantization
7.8 Classification
7.9 Results
7.10 Discussion
7.11 Topical Applications, Conceptual Extensions, and Outlook
7.12 Conclusion and Outlook
7.13 References

Chapter 8 Deformable Models Tim McInerney, and Demetri Terzopoulos
8.1 Introduction
8.2 Mathematical Foundations of Deformable Models
8.3 Medical Image Analysis with Deformable Models
8.4 Discussion
8.5 Conclusion
8.6 References

Chapter 9 Shape Information in Deformable Models Lawrence H. Staib, Y. Michelle Wang, Xiaolan Zeng, and James S. Duncan
9.1 Background
9.2 Global Shape Constraints
9.3 Level Set Methods Incorporating Generic Constraints
9.4 Conclusions
9.5 References

Chapter 10 Gradient Vector Flow Deformable Models Chenyang Xu, Xiao Han, and Jerry L. Prince
10.1 Introduction
10.2 Background
10.3 GVF Deformable Contours
10.4 Experiments
10.5 3D GVF Deformable Models and Results
10.6 Discussion
10.7 Conclusions
10.8 References

5.3 Region Growing
5.4 Watershed Algorithm
5.5 Edge-Based Segmentation Techniques
5.6 Multispectral Techniques
5.7 Other Techniques
5.8 Concluding Remarks
5.9 References

Chapter 5 Image Segmentation
5.3 Region Growing
5.4 Watershed Algorithm
5.5 Edge-Based Segmentation Techniques
5.6 Multispectral Techniques
5.7 Other Techniques
5.8 Concluding Remarks
5.9 References

Chapter 10 Gradient Vector Flow Deformable Models Chenyang Xu, Xiao Han, and Jerry L. Prince
10.1 Introduction
10.2 Background
10.3 GVF Deformable Contours
10.4 Experiments
10.5 3D GVF Deformable Models and Results
10.6 Discussion
10.7 Conclusions
10.8 References

Chapter 5 Image Segmentation
5.3 Region Growing
5.4 Watershed Algorithm
5.5 Edge-Based Segmentation Techniques
5.6 Multispectral Techniques
5.7 Other Techniques
5.8 Concluding Remarks
5.9 References

Chapter 4 Image Segmentation
4.3 Region Growing
4.4 Watershed Algorithm
4.5 Edge-Based Segmentation Techniques
4.6 Multispectral Techniques
4.7 Other Techniques
4.8 Concluding Remarks
4.9 References

Chapter 3 Image Segmentation
3.3 Region Growing
3.4 Watershed Algorithm
3.5 Edge-Based Segmentation Techniques
3.6 Multispectral Techniques
3.7 Other Techniques
3.8 Concluding Remarks
3.9 References

Chapter 2 Image Segmentation
2.3 Region Growing
2.4 Watershed Algorithm
2.5 Edge-Based Segmentation Techniques
2.6 Multispectral Techniques
2.7 Other Techniques
2.8 Concluding Remarks
2.9 References

Chapter 1 Image Segmentation
1.3 Region Growing
1.4 Watershed Algorithm
1.5 Edge-Based Segmentation Techniques
1.6 Multispectral Techniques
1.7 Other Techniques
1.8 Concluding Remarks
1.9 References

Contents
Contents

16.6 Applications to Real Data .. 285
16.7 Conclusions ... 290
16.8 References ...

Chapter 17 Computational Neuroanatomy Using Shape Transformations
Christos Davatzikos ... 293

17.1 Quantifying Anatomy via Shape Transformations
17.2 The Shape Transformation ... 294
17.3 Measurements Based on the Shape Transformation
17.4 Spatial Normalization of Image Data .. 297
17.5 Conclusion .. 299
17.6 References ... 302

Chapter 18 Tumor Growth Modeling in Oncological Image Analysis
Ender Konukoglu, Xavier Pennec, Olivier Clatz, and Nicholas Ayache
.. 305

18.1 Introduction .. 305
18.2 Mathematical Models ... 306
18.3 Image-Guided Tools for Therapy Planning
18.4 Applications to Registration and Segmentation
18.5 Perspectives and Challenges ... 311
18.6 References ... 313

Chapter 19 Arterial Tree Morphometry
Roger Johnson .. 317

19.1 Introduction .. 317
19.2 Data Acquisition for Vascular Morphometry
19.3 Image Processing for Arterial Tree Morphometry
19.4 Arterial Tree Morphometry in Pulmonary Hypertension Research
19.5 Discussion and Conclusions ... 325
19.6 References ... 333

Chapter 20 Image-Based Computational Biomechanics of the Musculoskeletal System
Edmund Y. S. Chao, Nozomu Inoue, Frank J. Frassica, and John J. Elias
.. 341

20.1 Introduction .. 341
20.2 Three-Dimensional Biomechanical Models of the Musculoskeletal System
20.3 Bone Structure and Material Property Analysis
20.4 Applications .. 347
20.5 Summary ... 351
20.6 References ... 353

Chapter 21 Three-Dimensional Bone Angle Quantification
Jens A. Richolt, Nobuhiko Hata, Ron Kikinis, Jens Kordelle, and Michael B. Millis
.. 355

21.1 Introduction .. 355
21.2 3D Angle Measurement Method .. 358
21.3 Results ... 361
21.4 Discussion ... 363
21.5 References ... 364

Chapter 22 Database Selection and Feature Extraction for Neural Networks
Bin Zheng ... 367

22.1 Introduction .. 367
22.2 Database Selection ... 370
22.3 Feature Selection .. 373
22.4 Summary ... 377
22.5 References ... 378
Chapter 23 Quantitative Image Analysis for Estimation of Breast Cancer Risk

Martin J. Yaffe, and Norman F. Boyd

23.1 Introduction ... 381
23.2 Methods for Characterizing Mammographic Density 385
23.3 Planimetry ... 386
23.4 Semiautomated Feature: Interactive Thresholding 386
23.5 Automated Analysis of Mammographic Densities 388
23.6 Symmetry of Projection in the Quantitative Analysis of Mammographic Images 391
23.7 Variation of Thickness across the Breast: Effect on Density Analysis .. 391
23.8 Volumetric Analysis of Mammographic Density 393
23.9 Other Imaging Modalities 395
23.10 Applications of Mammographic Density Measurements 395
23.11 References ... 396

Chapter 24 Classification of Breast Lesions from Mammograms

Yulei Jiang

24.1 Techniques for Classifying Breast Lesions 400
24.2 Performance of Computer Classification 407
24.3 Effect of Computer Classification on Radiologists' Diagnostic Performance .. 408
24.4 Methods for Presenting Computer Analysis to Radiologists 410
24.5 Summary ... 414
24.6 References ... 414

Chapter 25 Quantitative Analysis of Cardiac Function

Osman Ratib

25.1 Dynamic Image Acquisition Techniques 419
25.2 Dynamic Analysis of Left Ventricular Function 420
25.3 Quantitative Evaluation of Flow Motion 428
25.4 Conclusion ... 431
25.5 References ... 431

Chapter 26 Image Processing and Analysis in Tagged Cardiac MRI

William S. Kerwin, Nael F. Osman, and Jerry L. Prince

26.1 Introduction ... 435
26.2 Background .. 436
26.3 Feature Tracking Techniques in MR Tagging 439
26.4 Direct Encoding Methods 444
26.5 3-D Motion Estimation .. 446
26.6 Discussion ... 449
26.7 References ... 450

Chapter 27 Cytometric Features of Fluorescently Labeled Nuclei for Cell Classification

Susanne Heynen-Genel, and Jeffrey H. Price

27.1 Introduction ... 453
27.2 Nuclear Features .. 455
27.3 Classification Process .. 458
27.4 Example of Feature Analysis for Classification 460
27.5 Conclusion ... 461
27.6 References ... 462

Chapter 28 Image Interpolation and Resampling

Philippe Thévenaz, Thierry Blu, and Michael Unser

28.1 Introduction ... 465
28.2 Classical Interpolation ... 467
28.3 Generalized Interpolation 468
28.4 Terminology and Other Pitfalls 469
28.5 Artifacts ... 469
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3</td>
<td>Validation of Point Fiducial-Based Registration and Cross-Validation Using External Fiducial Gold Standards</td>
<td></td>
<td>571</td>
</tr>
<tr>
<td>33.4</td>
<td>Cross-Validation</td>
<td></td>
<td>572</td>
</tr>
<tr>
<td>33.5</td>
<td>Sensitivity to Starting Parameters and Statistical Modeling</td>
<td></td>
<td>572</td>
</tr>
<tr>
<td>33.6</td>
<td>Simulations</td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>33.7</td>
<td>Phantoms and Cadavers</td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>33.8</td>
<td>Internal Consistency</td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>33.9</td>
<td>Validation of Intersubject Warping</td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>33.10</td>
<td>References</td>
<td></td>
<td>574</td>
</tr>
</tbody>
</table>

Chapter 34
Landmark-Based Registration Using Features Identified through Differential Geometry
Xavier Pennec, Nicholas Ayache, and Jean-Philippe Thirion
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.1</td>
<td>Feature Extraction: Extremal Points and Lines</td>
<td>577</td>
</tr>
<tr>
<td>34.2</td>
<td>Rigid Registration</td>
<td>581</td>
</tr>
<tr>
<td>34.3</td>
<td>Robustness and Uncertainty Analysis</td>
<td>584</td>
</tr>
<tr>
<td>34.4</td>
<td>Conclusion</td>
<td>589</td>
</tr>
<tr>
<td>34.5</td>
<td>References</td>
<td>589</td>
</tr>
</tbody>
</table>

Chapter 35
Image Registration Using Chamfer Matching
Marcel Van Herk
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.1</td>
<td>Theory</td>
<td>591</td>
</tr>
<tr>
<td>35.2</td>
<td>Medical Applications of Chamfer Matching</td>
<td>593</td>
</tr>
<tr>
<td>35.3</td>
<td>Performance Tests of the Chamfer Matching Algorithm</td>
<td>599</td>
</tr>
<tr>
<td>35.4</td>
<td>Conclusions</td>
<td>601</td>
</tr>
<tr>
<td>35.5</td>
<td>References</td>
<td>602</td>
</tr>
</tbody>
</table>

Chapter 36
Within-Modality Registration Using Intensity-Based Cost Functions
Roger P. Woods
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.1</td>
<td>Cost Functions for Intramodality Registration</td>
<td>605</td>
</tr>
<tr>
<td>36.2</td>
<td>Interpolation Method</td>
<td>607</td>
</tr>
<tr>
<td>36.3</td>
<td>Calculus-Based Optimization</td>
<td>607</td>
</tr>
<tr>
<td>36.4</td>
<td>Speed and Accuracy Trade-offs</td>
<td>609</td>
</tr>
<tr>
<td>36.5</td>
<td>Scope and Limitations</td>
<td>609</td>
</tr>
<tr>
<td>36.6</td>
<td>Future Directions</td>
<td>610</td>
</tr>
<tr>
<td>36.7</td>
<td>References</td>
<td>610</td>
</tr>
</tbody>
</table>

Chapter 37
Across-Modality Registration Using Intensity-Based Cost Functions
Derek L.G. Hill, and David J. Hawkes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1</td>
<td>Introduction</td>
<td>613</td>
</tr>
<tr>
<td>37.2</td>
<td>Background to the Use of Voxel Similarity Measures</td>
<td>614</td>
</tr>
<tr>
<td>37.3</td>
<td>Joint Histograms</td>
<td>615</td>
</tr>
<tr>
<td>37.4</td>
<td>Information Theory Measures</td>
<td>617</td>
</tr>
<tr>
<td>37.5</td>
<td>Optimization</td>
<td>619</td>
</tr>
<tr>
<td>37.6</td>
<td>Applications of Mutual Information</td>
<td>621</td>
</tr>
<tr>
<td>37.7</td>
<td>Criticisms of Mutual Information</td>
<td>622</td>
</tr>
<tr>
<td>37.8</td>
<td>Conclusions</td>
<td>623</td>
</tr>
<tr>
<td>37.9</td>
<td>References</td>
<td>627</td>
</tr>
</tbody>
</table>

Chapter 38
Talairach Space as a Tool for Intersubject Standardization in the Brain
Jack L. Lancaster, and Peter T. Fox
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.1</td>
<td>Spatial Normalization</td>
<td>629</td>
</tr>
<tr>
<td>38.2</td>
<td>General Spatial Normalization Algorithm</td>
<td>631</td>
</tr>
<tr>
<td>38.3</td>
<td>Feature Matching</td>
<td>631</td>
</tr>
<tr>
<td>38.4</td>
<td>Transformation</td>
<td>632</td>
</tr>
<tr>
<td>38.5</td>
<td>Talairach Atlases</td>
<td>632</td>
</tr>
<tr>
<td>38.6</td>
<td>Manual SN Example</td>
<td>632</td>
</tr>
<tr>
<td>38.7</td>
<td>Accuracy of Spatial Normalization</td>
<td>635</td>
</tr>
</tbody>
</table>
Part V: Visualization Richard A. Robb

Chapter 44 Visualization Pathways in Biomedicine Meiappan Solaiyappan

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.1</td>
<td>Visualization in Medicine</td>
<td>729</td>
</tr>
<tr>
<td>44.2</td>
<td>Illustrative Visualization</td>
<td>731</td>
</tr>
<tr>
<td>44.3</td>
<td>Investigative Visualization</td>
<td>735</td>
</tr>
<tr>
<td>44.4</td>
<td>Imitative Visualization</td>
<td>741</td>
</tr>
<tr>
<td>44.5</td>
<td>Visualization in Biology</td>
<td>753</td>
</tr>
<tr>
<td>44.6</td>
<td>Visualization in Spatial Biostatistics</td>
<td>744</td>
</tr>
<tr>
<td>44.7</td>
<td>Parametric Visualization</td>
<td>745</td>
</tr>
<tr>
<td>44.8</td>
<td>Discussion</td>
<td>746</td>
</tr>
<tr>
<td>44.9</td>
<td>References</td>
<td>751</td>
</tr>
</tbody>
</table>

Chapter 45 Three-Dimensional Visualization in Medicine and Biology Dennis P. Hanson, and Richard A. Robb

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.1</td>
<td>Introduction</td>
<td>755</td>
</tr>
<tr>
<td>45.2</td>
<td>Background</td>
<td>756</td>
</tr>
<tr>
<td>45.3</td>
<td>Methods</td>
<td>757</td>
</tr>
<tr>
<td>45.4</td>
<td>Applications</td>
<td>766</td>
</tr>
<tr>
<td>45.5</td>
<td>Discussion</td>
<td>780</td>
</tr>
<tr>
<td>45.6</td>
<td>References</td>
<td>782</td>
</tr>
</tbody>
</table>

Chapter 46 Volume Visualization in Medicine Klaus Mueller, and Arie E. Kaufman

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.1</td>
<td>Introduction</td>
<td>785</td>
</tr>
<tr>
<td>46.2</td>
<td>Volumetric Data</td>
<td>786</td>
</tr>
<tr>
<td>46.3</td>
<td>Rendering via Geometric Primitives</td>
<td>786</td>
</tr>
<tr>
<td>46.4</td>
<td>Direct Volume Rendering: Prelude</td>
<td>787</td>
</tr>
<tr>
<td>46.5</td>
<td>Volumetric Function Interpolation</td>
<td>787</td>
</tr>
<tr>
<td>46.6</td>
<td>Volume Rendering Techniques</td>
<td>789</td>
</tr>
<tr>
<td>46.7</td>
<td>Acceleration Techniques</td>
<td>796</td>
</tr>
<tr>
<td>46.8</td>
<td>Classification and Transfer Functions</td>
<td>799</td>
</tr>
<tr>
<td>46.9</td>
<td>Volumetric Global Illumination</td>
<td>801</td>
</tr>
<tr>
<td>46.10</td>
<td>Making Volume Rendering Interactive</td>
<td>802</td>
</tr>
<tr>
<td>46.11</td>
<td>Multi-Channel and Multi-Modal Data</td>
<td>805</td>
</tr>
<tr>
<td>46.12</td>
<td>Illustrative and Task-Driven Volume Rendering</td>
<td>806</td>
</tr>
<tr>
<td>46.13</td>
<td>Case Study: 3D Virtual Colonoscopy</td>
<td>807</td>
</tr>
<tr>
<td>46.14</td>
<td>References</td>
<td>809</td>
</tr>
</tbody>
</table>

Chapter 47 Fast Isosurface Extraction Methods for Large Image Data sets Yarden Livnat, Steven G. Parker, and Christopher R. Johnson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1</td>
<td>Introduction</td>
<td>817</td>
</tr>
<tr>
<td>47.2</td>
<td>Accelerated Search</td>
<td>818</td>
</tr>
<tr>
<td>47.3</td>
<td>View-Dependent Algorithm</td>
<td>821</td>
</tr>
<tr>
<td>47.4</td>
<td>Real-Time Ray-Tracing</td>
<td>825</td>
</tr>
<tr>
<td>47.5</td>
<td>Sample Applications</td>
<td>827</td>
</tr>
<tr>
<td>47.6</td>
<td>References</td>
<td>828</td>
</tr>
</tbody>
</table>

Chapter 48 Computer Processing Methods for Virtual Endoscopy Adam Huang, and Ronald M. Summers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.1</td>
<td>Overview of Virtual Endoscopy</td>
<td>833</td>
</tr>
<tr>
<td>48.2</td>
<td>Computer Processing Methods for Virtual Endoscopy</td>
<td>834</td>
</tr>
<tr>
<td>48.3</td>
<td>Centerline Extraction and Flight Path Planning</td>
<td>835</td>
</tr>
<tr>
<td>48.4</td>
<td>Unfolding</td>
<td>835</td>
</tr>
<tr>
<td>48.5</td>
<td>Registration</td>
<td>835</td>
</tr>
</tbody>
</table>
Part VI: Compression, Storage, and Communication
H. K. Huang
847

Chapter 49
Fundamentals and Standards of Compression and Communication
Stephen P. Yanek, Quentin E. Dolecek, Robert L. Holland, and Joan E. Fetter
849

49.1 Introduction
849
49.2 Compression and Decompression
851
49.3 Telecommunications
856
49.4 Conclusion
859
49.5 References
860

Chapter 50
Medical Image Archive, Retrieval, and Communication
Albert Wong, and S. L. Lou
861

50.1 Introduction
861
50.2 Medical Image Information Model
862
50.3 Medical Image Archive System
862
50.4 DICOM Image Communication Standard
863
50.5 Archive Software Components
865
50.6 HIS/RIS Interfacing and Image Prefetching
867
50.7 DICOM Image Archive Standard
868
50.8 Structured Reporting
870
50.9 HIPAA Compliance
871
50.10 Electronic Health Record
872
50.11 PACS in Telemedicine
872
50.12 PACS Research Applications
872
50.13 Summary
873
50.14 References
873

Chapter 51
Image Standardization in PACS
Ewa Pietka
874

51.1 Introduction
874
51.2 Background Removal
875
51.3 Improvement of Visual Perception
882
51.4 Image Orientation
883
51.5 Accuracy of Quantitative Measurements in Image Intensifier Systems
886
51.6 Implementation of Image Standardization Functions in HI-PACS
890
51.7 Summary
892
51.8 References
892

Chapter 52
Imaging and Communication in Medical and Public Health Informatics: Current Issues and Emerging Trends
Melanie A. Sutton, Justice Mbizo, Ann Yoshihashi, and Robert E. Hoyt
895

52.1 Introduction
895
52.2 Imaging and Communication in Medical Informatics
896
52.3 Imaging and Communication in Public Health Informatics
898
52.4 Discussion
904
52.5 Conclusion and Future Trends
904
52.6 References
905

Chapter 53
Dynamic Mammogram Retrieval from Web-based Image Libraries Using Multiagents
Qing An Liu, Raman Paranjape, and Yan Yang
908

53.1 Introduction
908
53.2 Related Works
909
Contents

53.3 Methods ... 909
53.4 Retrieval Strategy .. 910
53.5 Experiments .. 911
53.6 Discussion ... 914
53.7 Conclusion ... 916
53.8 References ... 916

Chapter 54 Quality Evaluation for Compressed Medical Images: Fundamentals
Pamela Cosman, Robert Gray, and Richard Olshen ... 917

54.1 Introduction ... 917
54.2 Image Compression .. 918
54.3 The Three Data Sets .. 919
54.4 Average Distortion and SNR 921
54.5 Subjective Ratings .. 924
54.6 Diagnostic Accuracy and ROC Methodology 927
54.7 Determination of a Gold Standard 930
54.8 Concluding Remarks ... 931
54.9 References ... 931

Chapter 55 Quality Evaluation for Compressed Medical Images: Statistical Issues
Pamela Cosman, Robert Gray, and Richard Olshen ... 934

55.1 Introduction ... 934
55.2 Statistical Size and Power ... 934
55.3 Analysis of Learning Effects 936
55.4 Comparison of Judges ... 937
55.5 Relationships Between Quality Measures 938
55.6 Philosophical Issues ... 942
55.7 References ... 943

Chapter 56 Quality Evaluation for Compressed Medical Images: Diagnostic Accuracy
Pamela Cosman, Robert Gray, and Richard Olshen ... 944

56.1 Introduction ... 944
56.2 CT Study: Example of Detection Accuracy 944
56.3 MR Study: Example of Measurement Accuracy 949
56.4 Mammography Study: Example of Management Accuracy 955
56.5 Concluding Remarks ... 960
56.6 References ... 961

Chapter 57 Three-Dimensional Image Compression with Wavelet Transforms
Jun Wang, and H.K. Huang .. 963

57.1 Background ... 963
57.2 Wavelet Theory .. 963
57.3 Three-Dimensional Image Compression with Wavelet Transform 965
57.4 Wavelet Filter Selection for a 3D Image Data Set 967
57.5 References ... 972

Index ... 973