Micromechanics of Heterogeneous Materials

Valeriy A. Buryachenko

University of Dayton Research Institute

Springer
Contents

1 Introduction
- 1.1 Classification of Composites and Nanocomposites .. 1
 - 1.1.1 Geometrical Classification of Composite Materials (CM) 2
 - 1.1.2 Classification of Mechanical Properties of CM Constituents 5
 - 1.1.3 Classification of CM Manufacturing .. 8
- 1.2 Effective Material and Field Characteristics .. 8
- 1.3 Homogenization of Random Structure CM .. 12
- 1.4 Overview of the Book ... 15

2 Foundations of Solid Mechanics
- 2.1 Elements of Tensor Analysis ... 17
- 2.2 The Theory of Strains and Stresses ... 20
- 2.3 Basic Equations of Solid Mechanics ... 24
 - 2.3.1 Conservation Laws, Boundary Conditions, and Constitutive Equation 24
 - 2.3.2 The Equations of Linear Elasticity ... 28
 - 2.3.3 Extremum Principles of Elastostatic 29
- 2.4 Basic Equations of Thermoelasticity and Electroelasticity 31
 - 2.4.1 Thermoelasticity Equations .. 31
 - 2.4.2 Electroelastic Equations ... 35
 - 2.4.3 Matrix Representation of Some Symmetric Tensors 38
- 2.5 Symmetry of Elastic Properties .. 40
- 2.6 Basic Equations of Thermoelastoplastic Deformations 47
 - 2.6.1 Incremental Theory of Plasticity ... 47
 - 2.6.2 Deformation Theory of Plasticity 49

3 Green’s Functions, Eshelby and Related Tensors
- 3.1 Static Green’s Function .. 51
- 3.2 The Second Derivative of Green’s Function and Related Problems 54
 - 3.2.1 The Second Derivative of Green’s Function 54
 - 3.2.2 The Tensors Related to the Green’s Function 57
- 3.3 Dynamic Green’s and Related Functions 58
- 3.4 Inhomogeneity in an Elastic Medium .. 62
5 Statistical Description of Composite Materials

5.1 Basic Terminology and Properties of Random Variables and Random Point Fields

5.1.1 Random Variables
5.1.2 Random Point Fields
5.1.3 Basic Descriptors of Random Point Fields

5.2 Some Random Point Field Distributions

5.2.1 Poisson Distribution
5.2.2 Statistically Homogeneous Clustered Point Fields
5.2.3 Inhomogeneous Poisson Fields
5.2.4 Gibbs Point Fields

5.3 Ensemble Averaging of Random Structures

5.3.1 Ensemble Distribution Functions
5.3.2 Statistical Averages of Functions
5.3.3 Statistical Description of Indicator Functions
5.3.4 Geometrical Description and Averaging of Doubly and Triply Periodic Structures
5.3.5 Representations of ODF

5.4 Numerical Simulation of Random Structures

5.4.1 Materials and Image Analysis Procedures
5.4.2 Hard-Core Model
5.4.3 Hard-Core Shaking Model (HCSM)
5.4.4 Collective Rearrangement Model (CRM)

6 Effective Properties and Energy Methods in Thermoelasticity of Composite Materials

6.1 Effective Thermoelastic Properties

6.1.1 Hill’s Condition and Representative Volume Element
6.1.2 Effective Elastic Moduli
6.1.3 Overall Thermoelastic Properties

6.2 Effective Energy Functions

6.3 Some General Exact Results

6.3.1 Two-Phase Composites
6.3.2 Polycrystals Composed of Transversally Isotropic Crystals

6.4 Variational Principle of Hashin and Shtrikman

6.5 Bounds of Effective Elastic Moduli

6.5.1 Hill’s Bounds
6.5.2 Hashin-Shtrikman Bounds
6.5.3 Bounds of Higher Order

6.6 Bounds of Effective Conductivity

6.7 Bounds of Effective Eigenstrain
7 General Integral Equations of Micromechanics of Composite Materials 231
 7.1 General Integral Equations for Matrix Composites of Any Structure 232
 7.2 Random Structure Composites ... 234
 7.2.1 General Integral Equation for Random Structure Composites 234
 7.2.2 Some Particular Cases .. 237
 7.2.3 Comparison with Related Equations ... 239
 7.3 Doubly and Triply Periodical Structure Composites .. 241
 7.4 Random Structure Composites with Long-Range Order .. 244
 7.5 Triply Periodic Particulate Matrix Composites with Imperfect Unit Cells 246
 7.6 Conclusion .. 248

8 Multiparticle Effective Field and Related Methods in Micromechanics of Random Structure Composites 249
 8.1 Definitions of Effective Fields and Effective Field Hypotheses 250
 8.1.1 Effective Fields ... 250
 8.1.2 Approximate Effective Field Hypothesis ... 253
 8.1.3 Closing Effective Field Hypothesis ... 255
 8.1.4 Effective Field Hypothesis and Composites with One Sort of Inhomogeneities .. 255
 8.2 Analytical Representation of Effective Thermoelastic Properties 258
 8.2.1 Average Stresses in the Components .. 258
 8.2.2 Effective Properties of the Composite .. 260
 8.2.3 Some Related Multiparticle Methods .. 262
 8.3 One-Particle Approximation of the MEFM and Mori-Tanaka Approach 264
 8.3.1 One-Particle ("Quasi-Crystalline") Approximation of MEFM 264
 8.3.2 Mori-Tanaka Approach .. 269
 8.3.3 Effective Properties Estimated via the MEF and MTM at \(Q_i \equiv Q_i^0 \) 272
 8.3.4 Some Methods Related to the One-Particle Approximation of the MEFM 277
 8.3.5 Some Analytical Representations for Effective Moduli 280

9 Some Related Methods in Micromechanics of Random Structure Composites 283
 9.1 Related Perturbation Methods .. 283
 9.1.1 Combined MEFM–Perturbation Method .. 283
 9.1.2 Perturbation Method for Small Concentrations of Inclusions 286
 9.1.3 Perturbation Method for Weakly Inhomogeneous Media 287
 9.1.4 Elastically Homogeneous Media with Random Field of Residual Microstresses .. 290
9.2 Effective Medium Methods ... 291
 9.2.1 Application to Composite Materials 291
 9.2.2 Analysis of Polycrystal Materials 296
9.3 Differential Methods .. 298
 9.3.1 Scheme of the Differential Method 298
 9.3.2 One-Particle Differential Method 300
 9.3.3 Multiparticle Differential Method (Combination with EMM and with MEFM) ... 301
9.4 Estimation of Effective Properties of Composites with Nonellipsoidal Inclusions ... 303
9.5 Numerical Results ... 306
 9.5.1 Composites with Spheroidal Inhomogeneities 306
 9.5.2 Composites Reinforced by Nonellipsoidal Inhomogeneities with Ellipsoidal v_i .. 311
9.6 Discussion .. 314

10 Generalization of the MEFM in Random Structure Matrix Composites .. 315
10.1 Two Inclusions in an Infinite Matrix 316
10.2 Composite Material ... 319
 10.2.1 General Representations .. 319
 10.2.2 Some Related Integral Equations 321
 10.2.3 Closing Assumption and the Effective Properties 322
 10.2.4 Conditional Mean Value of Stresses in the Inclusions 323
10.3 First-order Approximation of the Closing Assumption and Effective Elastic Moduli .. 324
 10.3.1 General Equation for the Effective Fields $\langle \sigma_{i,j} \rangle$.. 324
 10.3.2 Closing Assumptions for the Strain Polarization Tensor $\langle \eta(y) ; v_i, x_i ; v_j, x_j(y) \rangle$ 326
 10.3.3 Effective Elastic Properties and Stress Concentrator Factors 329
 10.3.4 Symmetric Closing Assumption 329
 10.3.5 Closing Assumptions for the Effective Fields $\langle \sigma_{i,j,k} \rangle$.. 330
10.4 Abandonment from the Approximative Hypothesis (10.26) 332
10.5 Some Particular Cases .. 334
 10.5.1 Identical Aligned Inclusions 334
 10.5.2 Improved Analysis of Composites with Identical Aligned Fibers .. 337
 10.5.3 Effective Field Hypothesis .. 339
 10.5.4 Quasi-crystalline Approximation 341
10.6 Some Particular Numerical Results 342

11 Periodic Structures and Periodic Structures with Random Imperfections ... 347
11.1 General Analysis of Periodic Structures and Periodic Structures with Random Imperfections 347
11.2 Triply Periodical Particular Matrix Composites in Varying External Stress Field

11.2.1 Basic Equation and Approximative Effective Field Hypothesis ... 351
11.2.2 The Fourier Transform Method ... 352
11.2.3 Iteration Method ... 353
11.2.4 Average Strains in the Components ... 354
11.2.5 Effective Properties of Composites ... 355
11.2.6 Numerical Results ... 356

11.3 Graded Doubly Periodical Particular Matrix Composites in Varying External Stress Field

11.3.1 Local Approximation of Effective Stresses ... 361
11.3.2 Estimation of the Nonlocal Operator via the Iteration Method 363
11.3.3 General Relations for Average Stresses and Effective Thermoelastic Properties ... 364
11.3.4 Some Particular Cases for Effective Properties Representations 364
11.3.5 Doubly Periodic Inclusion Field in a Finite Stringer ... 365
11.3.6 Numerical Results for Three-Dimensional Fields ... 367
11.3.7 Numerical Results for Two-Dimensional Fields ... 369
11.3.8 Conclusion ... 370

11.4 Triply Periodic Particulate Matrix Composites with Imperfect Unit Cells

11.4.1 Choice of the Homogeneous Comparison Medium ... 371
11.4.2 MEFM Accompanied by Monte Carlo Simulation ... 374
11.4.3 Choice of the Periodic Comparison Medium. General Scheme 376
11.4.4 The Version of MEFM Using the Periodic Comparison Medium 380
11.4.5 Concluding Remarks ... 383

12 Nonlocal Effects in Statistically Homogeneous and Inhomogeneous Random Structure composites

12.1 General Analysis of Approaches in Nonlocal Micromechanics of Random Structure Composites ... 385
12.2 The Nonlocal Integral Equation ... 390
12.3 Methods for the Solution of the Nonlocal Integral Equation ... 392
12.3.1 Direct Quadrature Method ... 392
12.3.2 The Iteration Method ... 392
12.3.3 The Fourier Transform Method for Statistically Homogeneous Media ... 393
12.4 Average Stresses in the Components and Effective Properties for Statistically Homogeneous Media ... 396
12.4.1 Differential Representations ... 396
12.4.2 The Reduction of Integral Overall Constitutive Equations to Differential Ones ... 397
12.4.3 “Quasi-crystalline” Approximation 398
12.4.4 Numerical Analysis of Nonlocal Effects for Statistically Homogeneous Composites .. 399
12.5 Effective Properties of Statistically Inhomogeneous Media 403
12.5.1 Local Effective Properties of FGMs 403
12.5.2 Elastically Homogeneous Composites 406
12.5.3 Numerical Results of Estimation of Effective Properties of FGMs 407
12.5.4 Perturbation Method ... 412
12.5.5 Combined MEFM-Perturbation Method 413
12.5.6 The MEF Method ... 413
12.6 Concluding Remarks ... 414

13 Stress Fluctuations in Random Structure Composites 417
13.1 Perturbation Method ... 419
13.1.1 Exact Representation for First and Second Moments of Stresses Averaged over the Phase Volumes ... 419
13.1.2 Local Fluctuation of Stresses ... 423
13.1.3 Correlation Function of Stresses ... 423
13.1.4 Numerical Results and Discussions ... 425
13.2 Method of Integral Equations ... 427
13.2.1 Estimation of the Second Moment of Effective Stresses ... 427
13.2.2 Implicit Representations for the Second Moment of Stresses ... 428
13.2.3 Explicit Estimation of Second Moments of Stresses Inside the Phases ... 430
13.2.4 Numerical Estimation of the Second Moments of Stresses in the Phases ... 431
13.2.5 Related Method of Estimations of the Second Moments of Stresses ... 433
13.3 Elastically Homogeneous Composites with Randomly Distributed Residual Microstresses ... 434
13.3.1 The Conditional Average of the Stresses Inside the Components ... 435
13.3.2 The Second Moment Stresses Inside the Phases ... 435
13.3.3 Numerical Evaluation of Statistical Residual Stress Distribution in Elastically Homogeneous Media ... 438
13.4 Stress Fluctuations Near a Crack Tip in Elastically Homogeneous Materials with Randomly Distributed Residual Microstresses ... 440
13.4.1 The Average and Conditional Mean Values of SIF for Isolated Crack in a Composite Material ... 441
13.4.2 Conditional Dispersion of SIF for a Crack in the Composite Medium ... 444
13.4.3 Crack in a Finite Inclusion Cloud ... 445
13.4.4 Numerical Estimation of the First and Second Statistical Moments of Stress Intensity Factors ... 447
14 Random Structure Matrix Composites in a Half-Space

14.1 General Analysis of Approaches in Micromechanics of Random Structure Composites in a Half-space

14.2 General Integral Equation, Definitions of the Nonlocal Effective Properties, and Averaging Operations

14.3 Finite Number of Inclusions in a Half-Space

14.3.1 A Single Inclusion Subjected to Inhomogeneous Effective Stress

14.3.2 Two Inclusions

14.4 Nonlocal Effective Operators of Thermoelastic Properties of Microinhomogeneous Half-Space

14.4.1 Dilute Concentration of Inclusions

14.4.2 c^2 Order Accurate Estimation of Effective Thermoelastic Properties

14.4.3 Quasi-crystalline Approximation

14.4.4 Influence of a Correlation Hole v^0

14.5 Statistical Properties of Local Residual Microstresses in Elastically Homogeneous Half-Space

14.5.1 First Moment of Stresses in the Inclusions

14.5.2 Limiting Case for a Statistically Homogeneous Medium

14.5.3 Stress Fluctuations Inside the Inclusions

14.6 Numerical Results

15 Effective Limiting Surfaces in the Theory of Nonlinear Composites

15.1 Local Limiting Surface

15.1.1 Local Limiting Surface for Bulk Stresses

15.1.2 Local Limiting Surface for Interface Stresses

15.1.3 Fracture Criterion for an Isolated Crack

15.2 Effective Limiting Surface

15.2.1 Utilizing Fluctuations of Bulk Stresses Inside the Phases

15.2.2 Utilizing Interface Stress Fluctuations

15.2.3 Effective Fracture Surface for an Isolated Crack in the Elastically Homogeneous Medium with Random Residual Microstresses

15.2.4 Scheme of Simple Probability Model of Composite Fracture

15.3 Numerical Results

15.3.1 Utilizing Fluctuations of Bulk Stresses Inside the Phases

15.3.2 Utilizing Interface Stress Fluctuations

15.3.3 Effective Energy Release Rate and Fracture Probability

15.4 Concluding Remarks
16 Nonlinear Composites ... 505
 16.1 Nonlinear Elastic Composites 506
 16.1.1 Popular Linearization Scheme 506
 16.1.2 Modified Linearization Scheme 510
 16.2 Deformation Plasticity Theory of Composite Materials 513
 16.2.1 General Scheme ... 513
 16.2.2 Elastoplastic Deformation of Composites
 with an Incompressible Matrix 516
 16.2.3 General Case of Elastoplastic Deformation 517
 16.3 Power-Law Creep .. 517
 16.4 Elastic–Plastic Behavior of Elastically Homogeneous Materials
 with Random Residual Microstresses 521
 16.4.1 Leading Equations and Elastoplastic Deformations 521
 16.4.2 Numerical Results for Temperature-Independent
 Properties .. 525
 16.5 A Local Theory of Elastoplastic Deformations of Metal Matrix
 Composites .. 527
 16.5.1 Geometrical Structure of the Components 527
 16.5.2 Average Stresses Inside the Components and
 Overall Elastic Moduli 529
 16.5.3 Elastoplastic Deformation 530
 16.5.4 Numerical Results 532

17 Some related problems .. 537
 17.1 Conductivity .. 537
 17.1.1 Basic Equations and General Analysis 537
 17.1.2 Perturbation Methods 539
 17.1.3 Self-Consistent Methods 543
 17.1.4 Nonlinear and Nonlocal Properties 548
 17.2 Thermoelectroelasticity of Composites 549
 17.2.1 General Analysis .. 549
 17.2.2 Generalized Hill’s Conditions and Effective Properties
 .. 553
 17.2.3 Effective Energy Functions 555
 17.2.4 Two-Phase Composites 556
 17.2.5 Discontinuities of Generalized Fields at the Interface
 Between Components ... 557
 17.2.6 Phase-Averaged First and Second Moments
 of the Field Σ 558
 17.3 Wave Propagation in a Composite Material 561
 17.3.1 General Integral Equations and Effective Fields 561
 17.3.2 Fourier Transform of Effective Wave Operator 564
 17.3.3 Effective Wave Operator for Composites with Spherical
 Isotropic Inclusions 568
XX Contents

18 Multiscale Mechanics of Nanocomposites .. 571
 18.1 Elements of Molecular Dynamic (MD) Simulation 571
 18.1.1 General Analysis of MD Simulation of Nanocomposites 571
 18.1.2 Foundations of MD Simulation and Their Use in
 Estimation of Elastic Moduli 574
 18.1.3 Interface Modeling of NC 576
 18.2 Bridging Nanomechanics to Micromechanics in Nanocomposites 578
 18.2.1 General Representations for the Local Effective Moduli 579
 18.2.2 Generalization of Popular Micromechanical Methods to
 the Estimations of Effective Moduli of NCs 580
 18.3 Modeling of Nanofiber NCs in the Framework of Continuum
 Mechanics ... 582
 18.3.1 Statistical Description of NCs with Prescribed Random
 Orientation of NTs .. 582
 18.3.2 One Nanofiber Inside an Infinite Matrix 583
 18.3.3 Numerical Results for NCs Reinforced with Nanofibers 586
 18.4 Modeling of Clay NCs in the Framework of Continuum Mechanics 590
 18.4.1 Existing Modeling of Clustered Materials and Clay NCs 590
 18.4.2 Estimations of Effective Thermoeelastic Properties and
 Stress Concentrator Factors of Clay NCs via the MEF 593
 18.4.3 Numerical Solution for a Single Cluster in an Infinite
 Medium .. 596
 18.4.4 Numerical Estimations of Effective Properties
 of Clay NCs .. 598
 18.5 Some Related Problems in Modeling of NCs Reinforced with
 NFs and Nanoplates ... 602

19 Conclusion. Critical Analysis of Some Basic Concepts of
 Micromechanics .. 607

A Appendix ... 611
 A.1 Parametric Representation of Rotation Matrix 611
 A.2 Second and Fourth-Order Tensors of Special Structures 613
 A.2.1 E-basis ... 613
 A.2.2 P-basis ... 614
 A.2.3 B-basis ... 617
 A.3 Analytical Representation of Some Tensors 619
 A.3.1 Exterior-Point Eshelby Tensor 619
 A.3.2 Some Tensors Describing Fluctuations
 of Residual Stresses .. 621
 A.3.3 Integral Representations for Stress Intensity Factors 622

References .. 623

Index ... 679