Essentials of Radio Wave Propagation

Christopher Haslett
Ofcom, UK
Contents

Preface page ix
Acknowledgements xi

1 Propagation in free space and the aperture antenna 1

1.1 Propagation in free space: simplified explanation 1
1.2 The aperture antenna: simplified explanation 2
1.3 Further details and calculations 3
1.4 Point-to-point transmission 10
 1.4.1 Transmitting, directing and capturing power 10
 1.4.2 Transmission loss between practical antennas 12
 1.4.3 Determining the power required 14
 1.4.4 Example calculations 16
 1.4.5 Equivalent isotropic radiated power (EIRP) 18
1.5 Near-field effects: simplified explanation 18
 1.5.1 Further detail on the near-field issue 19
1.6 Polarisation 24
1.7 Summary 25

2 Point-to-area transmission 26

2.1 Overview 26
2.2 Power density and electric field strength 28
2.3 Converting from field strength to received signal power 30
2.4 Predicting the field strength at a distance 31
2.5 The effect of frequency 33
Contents

2.6 Prediction methods for digital mobile communication
- 2.6.1 The Okumura–Hata model 35
- 2.6.2 Comparison between propagation at 900 MHz and propagation at 1800 MHz 37

2.7 Base-station antennas 38
- 2.7.1 Sectored antennas 43

2.8 Mobile-station antennas 46

2.9 Interference and the noise floor 47

2.10 Summary 48

3 The effect of obstacles 50
- 3.1 Knife-edge diffraction 50
 - 3.1.1 Huygens’ principle and the Cornu spiral 53
- 3.2 Clearance requirements 61
- 3.3 A résumé of the assumptions and approximations 62
- 3.4 Diffraction through an aperture 62
- 3.5 Reflection from a finite surface 64
- 3.6 Antenna radiation patterns 67
 - 3.6.1 The radiation pattern of an aperture antenna 67
- 3.7 Multiple diffracting edges 70
 - 3.7.1 Comparison of methods 71
- 3.8 Diffraction by practical obstacles 78
- 3.9 The GTD/UTD 78
- 3.10 Clearance requirements and Fresnel zones 79
- 3.11 Summary 81

4 Reflection, scatter and penetration 83
- 4.1 Introduction 83
- 4.2 Standing wave patterns 85
- 4.3 Determining reflection coefficients 90
- 4.4 Propagation over a flat plane 92
4.5 Propagation over water
4.6 Rayleigh and Rician multipath environments
4.7 Reflections from rough surfaces
4.8 Penetration of materials
4.9 Summary

5 Estimating the received signal strength in complex environments

5.1 Aggregating multiple contributions

6 Atmospheric effects

6.1 Multipath propagation in the atmosphere
6.2 Ducting
6.3 The k-factor and the standard atmosphere
6.4 Anomalous propagation and multipath fading
6.5 Diversity techniques
6.5.1 Space diversity
6.5.2 Frequency diversity
6.5.3 Angle diversity
6.5.4 Polarisation diversity
6.5.5 Summary of diversity on fixed links
6.5.6 Diversity in mobile communications
6.6 Diffraction fading
6.7 Selective fading in long-distance, high-capacity microwave links
6.8 Ducting and interference in point-to-area systems
6.9 Rain attenuation
6.10 Atmospheric absorption
6.11 Atmospheric effects and Earth–space links
6.12 Noise and temperature effects
6.12.1 Noise calculations on Earth–space systems
6.13 Summary