Wireless Ad Hoc and Sensor Networks

Theory and Applications

XIANGYANG LI
Illinois Institute of Technology

CAMBRIDGE UNIVERSITY PRESS
Contents

 Preface
 Acknowledgments
 Abbreviations

Part I Introduction

1 History of Wireless Networks
 1.1 Introduction
 1.2 Different Wireless Networks
 1.3 Conclusion

2 Wireless Transmission Fundamentals
 2.1 Wireless Channels
 2.2 The Wireless Communication Graph
 2.3 Power Assignment and Topology Control
 2.4 The Wireless Interference Graph
 2.5 Related Graph Problems and Geometry Concepts
 2.6 Energy-Consumption Models
 2.7 Mobility Models
 2.8 Conclusion

Part II Wireless MACs

3 Wireless Medium-Access Control Protocols
 3.1 Introduction
 3.2 IEEE 802.11 Architecture and Protocols
 3.3 WiMAX
 3.4 Bluetooth
 3.5 MAC Protocols for Wireless Sensor Networks
 3.6 Conclusion

<table>
<thead>
<tr>
<th>Preface</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xxi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part I Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 History of Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Different Wireless Networks</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Conclusion</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II Wireless MACs</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Wireless Medium-Access Control Protocols</td>
<td>47</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>3.2 IEEE 802.11 Architecture and Protocols</td>
<td>49</td>
</tr>
<tr>
<td>3.3 WiMAX</td>
<td>60</td>
</tr>
<tr>
<td>3.4 Bluetooth</td>
<td>61</td>
</tr>
<tr>
<td>3.5 MAC Protocols for Wireless Sensor Networks</td>
<td>63</td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>69</td>
</tr>
</tbody>
</table>
TDMA Channel Assignment

4.1 Introduction 71
4.2 System Model and Assumptions 73
4.3 Centralized Scheduling 75
4.4 Distributed Algorithms 85
4.5 Weighted Coloring and Schedulable Flows 90
4.6 Further Reading 94
4.7 Conclusion and Remarks 96

Spectrum Channel Assignment

5.1 Introduction 99
5.2 Network System Model 101
5.3 List-Coloring for Access Networks 102
5.4 List-Coloring for Ad Hoc Networks 112
5.5 Transition Phenomena on Channel Availability 114
5.6 Further Reading 116
5.7 Conclusion and Remarks 118

CDMA Code Channel Assignment

6.1 Introduction 120
6.2 System Model and Assumptions 123
6.3 Throughput and Bottleneck of General Graphs 126
6.4 Approximation Algorithms for Interference Graphs 129
6.5 Maximum Weighted Independent Set for a General Wireless Network Model 136
6.6 Further Reading 148
6.7 Conclusion and Remarks 150

Part III Topology Control and Clustering

Clustering and Network Backbone

7.1 Introduction 155
7.2 Network Models and Problem Formulation 155
7.3 Centralized Algorithms for a Connected Dominating Set 157
7.4 Message Lower Bound for Distributed-Backbone Construction 161
7.5 Some Backbone-Formation Heuristics 163
7.6 Efficient Distributed-Nontrivial-Backbone-Formation Method 166
7.7 Efficient Distributed-Backbone-Formation Method 170
7.8 Linear-Programming-Based Approaches 179
7.9 Geometry-Position-Based Approaches 184
7.10 Further Reading 186
7.11 Conclusion and Remarks 187
Contents

8 Weighted Network Backbone

8.1 Introduction
8.2 Study of Typical Methods
8.3 Centralized Low-Cost Backbone-Formation Algorithms
8.4 Efficient Distributed Low-Cost Backbone-Formation Algorithms
8.5 Performance Guarantee
8.6 Discussion
8.7 Further Reading
8.8 Conclusion and Remarks

9 Topology Control with Flat Structures

9.1 Introduction
9.2 Current State of Knowledge
9.3 Planar Structures
9.4 Bounded-Degree Spanner and Yao’s Family
9.5 Bounded-Degree Planar Spanner
9.6 Low-Weighted Structures
9.7 A Unified Structure: Energy Efficiency for Unicast and Broadcast
9.8 Spanners for Heterogeneous Networks
9.9 Fault-Tolerant Structures
9.10 Other Spanners
9.11 Conclusion and Remarks

10 Power Assignment

10.1 Introduction
10.2 Power Assignment for Connectivity
10.3 Power Assignment for Routing
10.4 Further Reading
10.5 Conclusion and Remarks

11 Critical Transmission Ranges for Connectivity

11.1 Introduction
11.2 Preliminaries
11.3 Critical Range for Connectivity
11.4 Critical Range for k-Connectivity
11.5 Connectivity with Bernoulli Nodes
11.6 Practical Performances
11.7 Further Reading
11.8 Conclusion and Remarks
Contents

16.3 Problem Formulation for Cross-Layer Optimization 444
16.4 Efficient Link, Channel Scheduling 449
16.5 Further Reading 455
16.6 Conclusion 458

Part V Other Issues

17 Localization and Location Tracking 463
17.1 Introduction 463
17.2 Available Information 465
17.3 Computational Complexity of Sensor Network Localization 470
17.4 Progressive Localization Methods 476
17.5 Network-Wide Localization Methods 482
17.6 Target Tracking and Classification 485
17.7 Experimental Location and Tracking Systems 498
17.8 Conclusion and Remarks 500

18 Performance Limitations of Random Wireless Ad Hoc Networks 503
18.1 Introduction 503
18.2 Capacity of Unicast for an Arbitrary Network 506
18.3 Capacity of Unicast for Randomly Deployed Networks 508
18.4 Capacity of Broadcast for an Arbitrary Network 510
18.5 Capacity of Broadcast for Randomly Deployed Networks 512
18.6 Further Reading 517
18.7 Conclusion and Remarks 518

19 Security of Wireless Ad Hoc Networks 521
19.1 Introduction 521
19.2 Cryptography Fundamentals 522
19.3 Key-Predistribution Protocols 536
19.4 Secure Routing Protocols 538
19.5 Further Reading 542
19.6 Conclusion and Remarks 543

Bibliography 547
Index 579