The Method of Moments in Electromagnetics

Walton C. Gibson

http://www.tripointindustries.com
kalla@tripoint.org

Chapman & Hall/CRC
Taylor & Francis Group
Boca Raton London New York
Chapter 3 The Method of Moments
3.1 Electrostatic Problems
 3.1.1 Charged Wire
 3.1.2 Charged Plate
3.2 The Method of Moments
 3.2.1 Point Matching
 3.2.2 Galerkin’s Method
3.3 Common Two-Dimensional Basis Functions
 3.3.1 Pulse Functions
 3.3.2 Piecewise Triangular Functions
 3.3.3 Piecewise Sinusoidal Functions
 3.3.4 Entire-Domain Functions
 3.3.5 Number of Basis Functions
3.4 Solution of Matrix Equations
 3.4.1 Gaussian Elimination
 3.4.2 LU Decomposition
 3.4.3 Condition Number
 3.4.4 Iterative Methods
 3.4.5 Examples
 3.4.6 Commonly Used Matrix Algebra Software

Chapter 4 Thin Wires
4.1 Thin Wire Approximation
4.2 Thin Wire Excitations
 4.2.1 Delta-Gap Source
 4.2.2 Magnetic Frill
 4.2.3 Plane Wave
4.3 Solving Hallén’s Equation
 4.3.1 Symmetric Problems
 4.3.2 Asymmetric Problems
4.4 Solving Pocklington’s Equation
 4.4.1 Solution by Pulse Functions and Point Matching
4.5 Thin Wires of Arbitrary Shape
 4.5.1 Redistribution of EFIE Differential Operators
 4.5.2 Solution Using Triangle Basis and Testing Functions
 4.5.3 Solution Using Sinusoidal Basis and Testing Functions
 4.5.4 Lumped and Distributed Impedances
4.6 Examples
 4.6.1 Comparison of Thin Wire Models
 4.6.2 Circular Loop Antenna
 4.6.3 Folded Dipole Antenna
 4.6.4 Two-Wire Transmission Line
7.3.2 Singular Matrix Element Evaluation 168
7.3.3 EFIE Excitation Vector Elements 176
7.3.4 Radiated Field 178

7.4 MFIE for Three-Dimensional Conducting Surfaces 179
7.4.1 MFIE Matrix Elements 179
7.4.2 MFIE Excitation Vector Elements 184
7.4.3 Radiated Field 184
7.4.4 Accuracy of RWG Functions in MFIE 184

7.5 Notes on Software Implementation 185
7.5.1 Memory Management 185
7.5.2 Parallelization 185

7.6 Considerations for Modeling with Triangles 187
7.6.1 Triangle Aspect Ratios 187
7.6.2 Watertight Meshes and T-Junctions 188

7.7 Examples 188
7.7.1 Serenity 189
7.7.2 RCS of a Sphere 189
7.7.3 EMCC Plate Benchmark Targets 189
7.7.4 Strip Dipole Antenna 198
7.7.5 Bowtie Antenna 199
7.7.6 Archimedean Spiral Antenna 201
7.7.7 Summary of Examples 204

References 205

Chapter 8 The Fast Multipole Method 209
8.1 The Matrix-Vector Product 210
8.2 Addition Theorem 210
8.2.1 Wave Translation 212
8.3 FMM Matrix Elements 213
8.3.1 EFIE Matrix Elements 213
8.3.2 MFIE Matrix Elements 214
8.3.3 CFIE Matrix Elements 215
8.3.4 Matrix Transpose 215

8.4 One-Level Fast Multipole Algorithm 215
8.4.1 Grouping of Basis Functions 215
8.4.2 Near and Far Groups 216
8.4.3 Number of Multipoles 216
8.4.4 Sampling Rates and Integration 218
8.4.5 Transfer Functions 219
8.4.6 Radiation and Receive Functions 220
8.4.7 Near-Matrix Elements 220
8.4.8 Matrix-Vector Product 221
8.4.9 Computational Complexity 222

8.5 Multi-Level Fast Multipole Algorithm (MLFMA) 222
8.5.1 Grouping via Octree 222
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.2</td>
<td>Matrix-Vector Product</td>
<td>223</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Interpolation Algorithms</td>
<td>227</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Transfer Functions</td>
<td>229</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Radiation and Receive Functions</td>
<td>230</td>
</tr>
<tr>
<td>8.5.6</td>
<td>Interpolation Steps in MLFMA</td>
<td>230</td>
</tr>
<tr>
<td>8.5.7</td>
<td>Computational Complexity</td>
<td>231</td>
</tr>
<tr>
<td>8.6</td>
<td>Notes on Software Implementation</td>
<td>231</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Initial Guess in Iterative Solution</td>
<td>231</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Memory Management</td>
<td>232</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Parallelization</td>
<td>234</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Vectorization</td>
<td>234</td>
</tr>
<tr>
<td>8.7</td>
<td>Preconditioning</td>
<td>235</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Diagonal Preconditioner</td>
<td>235</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Block Diagonal Preconditioner</td>
<td>236</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Inverse LU Preconditioner</td>
<td>236</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Sparse Approximate Inverse</td>
<td>237</td>
</tr>
<tr>
<td>8.8</td>
<td>Examples</td>
<td>240</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Bistatic RCS of a Sphere</td>
<td>240</td>
</tr>
<tr>
<td>8.8.2</td>
<td>EMCC Benchmark Targets</td>
<td>240</td>
</tr>
<tr>
<td>8.8.3</td>
<td>Summary of Examples</td>
<td>245</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Integration</td>
<td>255</td>
</tr>
<tr>
<td>9.1</td>
<td>One-Dimensional Integration</td>
<td>255</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Centroidal Approximation</td>
<td>255</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Trapezoidal Rule</td>
<td>256</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Simpson’s Rule</td>
<td>258</td>
</tr>
<tr>
<td>9.1.4</td>
<td>One-Dimensional Gaussian Quadrature</td>
<td>259</td>
</tr>
<tr>
<td>9.2</td>
<td>Integration over Triangles</td>
<td>260</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Simplex Coordinates</td>
<td>260</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Radiation Integrals with a Constant Source</td>
<td>262</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Radiation Integrals with a Linear Source</td>
<td>265</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Gaussian Quadrature on Triangles</td>
<td>267</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>269</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>271</td>
</tr>
</tbody>
</table>