Fundamentals of Momentum, Heat, and Mass Transfer

5th Edition

James R. Welty
Department of Mechanical Engineering

Charles E. Wicks
Department of Chemical Engineering

Robert E. Wilson
Department of Mechanical Engineering

Gregory L. Rorrer
Department of Chemical Engineering
Oregon State University

John Wiley & Sons, Inc.
Contents

1. **Introduction to Momentum Transfer** 1
 1.1 Fluids and the Continuum 1
 1.2 Properties at a Point 2
 1.3 Point-to-Point Variation of Properties in a Fluid 5
 1.4 Units 8
 1.5 Compressibility 9
 1.6 Surface Tension 11

2. **Fluid Statics** 16
 2.1 Pressure Variation in a Static Fluid 16
 2.2 Uniform Rectilinear Acceleration 19
 2.3 Forces on Submerged Surfaces 20
 2.4 Buoyancy 23
 2.5 Closure 25

3. **Description of a Fluid in Motion** 29
 3.1 Fundamental Physical Laws 29
 3.2 Fluid-Flow Fields: Lagrangian and Eulerian Representations 29
 3.3 Steady and Unsteady Flows 30
 3.4 Streamlines 31
 3.5 Systems and Control Volumes 32

4. **Conservation of Mass: Control-Volume Approach** 34
 4.1 Integral Relation 34
 4.2 Specific Forms of the Integral Expression 35
 4.3 Closure 39

5. **Newton’s Second Law of Motion: Control-Volume Approach** 43
 5.1 Integral Relation for Linear Momentum 43
 5.2 Applications of the Integral Expression for Linear Momentum 46
 5.3 Integral Relation for Moment of Momentum 52
 5.4 Applications to Pumps and Turbines 53
 5.5 Closure 57

6. **Conservation of Energy: Control-Volume Approach** 63
 6.1 Integral Relation for the Conservation of Energy 63
 6.2 Applications of the Integral Expression 69
6.3 The Bernoulli Equation 72
6.4 Closure 76

7. Shear Stress in Laminar Flow 81
7.1 Newton’s Viscosity Relation 81
7.2 Non-Newtonian Fluids 82
7.3 Viscosity 83
7.4 Shear Stress in Multidimensional Laminar Flows of a Newtonian Fluid 88
7.5 Closure 90

8. Analysis of a Differential Fluid Element in Laminar Flow 92
8.1 Fully Developed Laminar Flow in a Circular Conduit of Constant Cross Section 92
8.2 Laminar Flow of a Newtonian Fluid Down an Inclined-Plane Surface 95
8.3 Closure 97

9.1 The Differential Continuity Equation 99
9.2 Navier-Stokes Equations 101
9.3 Bernoulli’s Equation 110
9.4 Closure 111

10. Inviscid Fluid Flow 113
10.1 Fluid Rotation at a Point 113
10.2 The Stream Function 114
10.3 Inviscid, Irrotational Flow about an Infinite Cylinder 116
10.4 Irrotational Flow, the Velocity Potential 117
10.5 Total Head in Irrotational Flow 119
10.6 Utilization of Potential Flow 119
10.7 Potential Flow Analysis—Simple Plane Flow Cases 120
10.8 Potential Flow Analysis—Superposition 121
10.9 Closure 123

11. Dimensional Analysis and Similitude 125
11.1 Dimensions 125
11.2 Dimensional Analysis of Governing Differential Equations 126
11.3 The Buckingham Method 128
11.4 Geometric, Kinematic, and Dynamic Similarity 131
11.5 Model Theory 132
11.6 Closure 134

12. Viscous Flow 137
12.1 Reynolds’s Experiment 137
12.2 Drag 138
12.3 The Boundary-Layer Concept 144
12.4 The Boundary-Layer Equations 145
12.5 Blasius’s Solution for the Laminar Boundary Layer on a Flat Plate 146
12.6 Flow with a Pressure Gradient 150
12.7 von Kármán Momentum Integral Analysis 152
12.8 Description of Turbulence 155
12.9 Turbulent Shearing Stresses 157
12.10 The Mixing-Length Hypothesis 158
12.11 Velocity Distribution from the Mixing-Length Theory 160
12.12 The Universal Velocity Distribution 161
12.13 Further Empirical Relations for Turbulent Flow 162
12.14 The Turbulent Boundary Layer on a Flat Plate 163
12.15 Factors Affecting the Transition From Laminar to Turbulent Flow 165
12.16 Closure 165

13. Flow in Closed Conduits 168
13.1 Dimensional Analysis of Conduit Flow 168
13.2 Friction Factors for Fully Developed Laminar, Turbulent, and Transition Flow in Circular Conduits 170
13.3 Friction Factor and Head-Loss Determination for Pipe Flow 173
13.4 Pipe-Flow Analysis 176
13.5 Friction Factors for Flow in the Entrance to a Circular Conduit 179
13.6 Closure 182

14. Fluid Machinery 185
14.1 Centrifugal Pumps 186
14.2 Scaling Laws for Pumps and Fans 194
14.3 Axial and Mixed Flow Pump Configurations 197
14.4 Turbines 197
14.5 Closure 197

15. Fundamentals of Heat Transfer 201
15.1 Conduction 201
15.2 Thermal Conductivity 202
15.3 Convection 207
15.4 Radiation 209
15.5 Combined Mechanisms of Heat Transfer 209
15.6 Closure 213

16.1 The General Differential Equation for Energy Transfer 217
16.2 Special Forms of the Differential Energy Equation 220
16.3 Commonly Encountered Boundary Conditions 221
16.4 Closure 222
Contents

17. Steady-State Conduction 224
- 17.1 One-Dimensional Conduction 224
- 17.2 One-Dimensional Conduction with Internal Generation of Energy 230
- 17.3 Heat Transfer from Extended Surfaces 233
- 17.4 Two- and Three-Dimensional Systems 240
- 17.5 Closure 246

18. Unsteady-State Conduction 252
- 18.1 Analytical Solutions 252
- 18.2 Temperature-Time Charts for Simple Geometric Shapes 261
- 18.3 Numerical Methods for Transient Conduction Analysis 263
- 18.4 An Integral Method for One-Dimensional Unsteady Conduction 266
- 18.5 Closure 270

19. Convective Heat Transfer 274
- 19.1 Fundamental Considerations in Convective Heat Transfer 274
- 19.2 Significant Parameters in Convective Heat Transfer 275
- 19.3 Dimensional Analysis of Convective Energy Transfer 276
- 19.4 Exact Analysis of the Laminar Boundary Layer 279
- 19.5 Approximate Integral Analysis of the Thermal Boundary Layer 283
- 19.6 Energy- and Momentum-Transfer Analogies 285
- 19.7 Turbulent Flow Considerations 287
- 19.8 Closure 293

20. Convective Heat-Transfer Correlations 297
- 20.1 Natural Convection 297
- 20.2 Forced Convection for Internal Flow 305
- 20.3 Forced Convection for External Flow 311
- 20.4 Closure 318

21. Boiling and Condensation 323
- 21.1 Boiling 323
- 21.2 Condensation 328
- 21.3 Closure 334

22. Heat-Transfer Equipment 336
- 22.1 Types of Heat Exchangers 336
- 22.3 Crossflow and Shell-and-Tube Heat-Exchanger Analysis 343
- 22.4 The Number-of-Transfer-Units (NTU) Method of Heat-Exchanger Analysis and Design 347
- 22.5 Additional Considerations in Heat-Exchanger Design 354
- 22.6 Closure 356
23. Radiation Heat Transfer 359

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Nature of Radiation</td>
<td>359</td>
</tr>
<tr>
<td>23.2 Thermal Radiation</td>
<td>360</td>
</tr>
<tr>
<td>23.3 The Intensity of Radiation</td>
<td>361</td>
</tr>
<tr>
<td>23.4 Planck's Law of Radiation</td>
<td>363</td>
</tr>
<tr>
<td>23.5 Stefan-Boltzmann Law</td>
<td>365</td>
</tr>
<tr>
<td>23.6 Emissivity and Absorptivity of Solid Surfaces</td>
<td>367</td>
</tr>
<tr>
<td>23.7 Radiant Heat Transfer Between Black Bodies</td>
<td>370</td>
</tr>
<tr>
<td>23.8 Radiant Exchange in Black Enclosures</td>
<td>379</td>
</tr>
<tr>
<td>23.9 Radiant Exchange in Reradiating Surfaces Present</td>
<td>380</td>
</tr>
<tr>
<td>23.10 Radiant Heat Transfer Between Gray Surfaces</td>
<td>381</td>
</tr>
<tr>
<td>23.11 Radiation from Gases</td>
<td>388</td>
</tr>
<tr>
<td>23.12 The Radiation Heat-Transfer Coefficient</td>
<td>392</td>
</tr>
<tr>
<td>23.13 Closure</td>
<td>393</td>
</tr>
</tbody>
</table>

24. Fundamentals of Mass Transfer 398

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Molecular Mass Transfer</td>
<td>399</td>
</tr>
<tr>
<td>24.2 The Diffusion Coefficient</td>
<td>407</td>
</tr>
<tr>
<td>24.3 Convective Mass Transfer</td>
<td>428</td>
</tr>
<tr>
<td>24.4 Closure</td>
<td>429</td>
</tr>
</tbody>
</table>

25. Differential Equations of Mass Transfer 433

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1 The Differential Equation for Mass Transfer</td>
<td>433</td>
</tr>
<tr>
<td>25.2 Special Forms of the Differential Mass-Transfer Equation</td>
<td>436</td>
</tr>
<tr>
<td>25.3 Commonly Encountered Boundary Conditions</td>
<td>438</td>
</tr>
<tr>
<td>25.4 Steps for Modeling Processes Involving Molecular Diffusion</td>
<td>441</td>
</tr>
<tr>
<td>25.5 Closure</td>
<td>448</td>
</tr>
</tbody>
</table>

26. Steady-State Molecular Diffusion 452

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1 One-Dimensional Mass Transfer Independent of Chemical Reaction</td>
<td>452</td>
</tr>
<tr>
<td>26.2 One-Dimensional Systems Associated with Chemical Reaction</td>
<td>463</td>
</tr>
<tr>
<td>26.3 Two- and Three-Dimensional Systems</td>
<td>474</td>
</tr>
<tr>
<td>26.4 Simultaneous Momentum, Heat, and Mass Transfer</td>
<td>479</td>
</tr>
<tr>
<td>26.5 Closure</td>
<td>488</td>
</tr>
</tbody>
</table>

27. Unsteady-State Molecular Diffusion 496

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 Unsteady-State Diffusion and Fick's Second Law</td>
<td>496</td>
</tr>
<tr>
<td>27.2 Transient Diffusion in a Semi-Infinite Medium</td>
<td>497</td>
</tr>
<tr>
<td>27.3 Transient Diffusion in a Finite-Dimensional Medium Under Conditions of Negligible Surface Resistance</td>
<td>500</td>
</tr>
<tr>
<td>27.4 Concentration-Time Charts for Simple Geometric Shapes</td>
<td>509</td>
</tr>
<tr>
<td>27.5 Closure</td>
<td>512</td>
</tr>
</tbody>
</table>
28. Convective Mass Transfer 517

28.1 Fundamental Considerations in Convective Mass Transfer 517
28.2 Significant Parameters in Convective Mass Transfer 519
28.3 Dimensional Analysis of Convective Mass Transfer 521
28.4 Exact Analysis of the Laminar Concentration Boundary Layer 524
28.5 Approximate Analysis of the Concentration Boundary Layer 531
28.6 Mass, Energy, and Momentum-Transfer Analogies 533
28.7 Models for Convective Mass-Transfer Coefficients 542
28.8 Closure 545

29. Convective Mass Transfer Between Phases 551

29.1 Equilibrium 551
29.2 Two-Resistance Theory 554
29.3 Closure 563

30. Convective Mass-Transfer Correlations 569

30.1 Mass Transfer to Plates, Spheres, and Cylinders 569
30.2 Mass Transfer Involving Flow Through Pipes 580
30.3 Mass Transfer in Wetted-Wall Columns 581
30.4 Mass Transfer in Packed and Fluidized Beds 584
30.5 Gas-Liquid Mass Transfer in Stirred Tanks 585
30.6 Capacity Coefficients for Packed Towers 587
30.7 Steps for Modeling Mass-Transfer Processes Involving Convection 588
30.8 Closure 595

31. Mass-Transfer Equipment 603

31.1 Types of Mass-Transfer Equipment 603
31.2 Gas-Liquid Mass-Transfer Operations in Well-Mixed Tanks 605
31.3 Mass Balances for Continuous Contact Towers: Operating-Line Equations 611
31.4 Enthalpy Balances for Continuous-Contact Towers 620
31.5 Mass-Transfer Capacity Coefficients 621
31.6 Continuous-Contact Equipment Analysis 622
31.7 Closure 636

Nomenclature 641

APPENDIXES

A. Transformations of the Operators V and V2 to Cylindrical Coordinates 648
B. Summary of Differential Vector Operations in Various Coordinate Systems 651
C. Symmetry of the Stress Tensor 654
D. The Viscous Contribution to the Normal Stress 655
E. The Navier–Stokes Equations for Constant \(\rho \) and \(\mu \) in Cartesian, Cylindrical, and Spherical Coordinates 657
F. Charts for Solution of Unsteady Transport Problems 659