Contents

Preface ix
Terminology and Abbreviations xiii
Nomenclature xix
Conversion Table xxiii

Part 1 Engineering Guides of Modular Design and Description Methodology of Machine Tools

Chapter 1. Basic Knowledge: What Is the Modular Design? 3
 1.1 Definition and Overall View of Modular Design 11
 1.2 Advantageous and Disadvantageous Aspects of Modular Design 17
 1.3 A Firsthand View of Developing History and Representative Applications 20
 1.3.1 Application to TL and FTL 27
 1.3.2 Application to conventional machine tools 40
 1.3.3 Application to NC machine tools 47
 1.3.4 Different-kind generating modular design 54
References 60

Chapter 2. Engineering Guides and Future Perspectives of Modular Design 63
 2.1 Four Principles and Further Related Subjects 64
 2.2 Effective Tools and Methodology for Modular Design 72
 2.3 Classification of Modular Design Including Future Perspectives 76
 2.3.1 Modular design being widely employed 78
 2.3.2 Modular design in the very near future—a symptom of upheaval of new concepts 80
 2.4 Characteristic Features of Modular Design Being Used in Machine Tools of the Most Advanced Type 86
 2.4.1 System machines 88
 2.4.2 Machining complex and processing complex 102
References 108
6.3 Design Formulas for Tangential Joint Stiffness, Related Researches, and Peculiar Behavior of Microslip

6.3.1 Expressions for static tangential joint stiffness 232
6.3.2 Representative researches into behavior of the static tangential joint stiffness and the microslip 233
6.3.3 Peculiar behavior of microslip 243

6.4 Design Formulas for Damping Capacity and Related Researches 246
6.4.1 Expressions for damping capacity 247
6.4.2 Representative research into dynamic behavior 252

6.5 Thermal Behavior of Single Flat Joint 260
6.6 Forerunning Research into Single Flat Joint with Local Deformation 267

References 276

Supplement: Theoretical Proof of Ostrovskii's Expression 278

7.1 Bolted Joint
7.1.1 Design guides and knowledge—pressure cone and reinforcement remedies from structural configuration 288
7.1.2 Engineering design for practices—suitable configuration of bolt pocket and arrangement of connecting bolts 300
7.1.3 Engineering calculation for damping capacity 311
7.1.4 Representative researches and their noteworthy achievements—static behavior 320
7.1.5 Representative researches and their noteworthy achievements—dynamic behavior 332
7.1.6 Representative researches and their noteworthy achievements—thermal behavior 335

7.2 Foundation
7.2.1 Engineering calculation for foundation 345
7.2.2 Stiffness of leveling block 347

References 352

Supplement 1: Firsthand View for Researches in Engineering Design in Consideration of Joints 354
Supplement 2: Influences of Joints on Positioning and Assembly Accuracy 357
Supplement References 357

8.1 Slideways
8.1.1 Design knowledge—slideway materials 370
8.1.2 Design knowledge—keep plate and gib configurations 374

8.2 Linear Rolling Guideways (Linear Guide and Rolling Guideways) 381

8.3 Main Spindle-Bearing Systems
8.3.1 Static stiffness of rolling bearing 389
8.3.2 Dynamic stiffness and damping capacity of rolling bearing 395

8.4 Sliding Joints of Special Types
8.4.1 Screw-and-nut feed driving systems 401
8.4.2 Boring spindle of traveling type 403

References 406
Supplement: Deflection and Interface Pressure Distribution of Slideway Supplement Reference

Chapter 9. Rudimentary Engineering Knowledge about Other Joints
9.1 Joints for Light-Weighted Structures
 9.1.1 Welded joint
 9.1.2 Bonded joint
9.2 Taper Connection
9.3 Chucking
References

Appendix 1. Measurement of Interface Pressure by Means of Ultrasonic Waves
 A1.1 Principle of Measurement and Its Verification
 A1.2 Some Applications and Perspectives in the Very Near Future
 References

Appendix 2. Model Testing and Theory
 A2.1 Model Testing and Theory for Structural Body Component
 A2.2 Model Testing in Consideration of Joints
 References

Index