Electrodeposition from Ionic Liquids

Edited by
Frank Endres, Douglas MacFarlane,
and Andrew Abbott
Contents

Preface IX
Foreword XIII
List of Contributors XV
List of Abbreviations XIX

1 Why use Ionic Liquids for Electrodeposition? 1
Andrew P. Abbott, Ian Dalrymple, Frank Endres, and Douglas R. MacFarlane
1.1 Non-aqueous Solutions 3
1.2 Ionic Fluids 3
1.3 What is an Ionic Liquid? 4
1.4 Technological Potential of Ionic Liquids 6
1.5 Concluding Remarks 12
References 12

2 Synthesis of Ionic Liquids 15
2.1 Synthesis of Chloroaluminate Ionic Liquids 15
2.2 Air- and Water-stable Ionic Liquids 21
2.3 Eutectic-based Ionic Liquids 31
References 42

3 Physical Properties of Ionic Liquids for Electrochemical Applications 47
Hiroyuki Ohno
3.1 Introduction 47
3.2 Thermal Properties 47
3.3 Viscosity 54
3.4 Density 55
3.5 Refractive Index 56
3.6 Polarity 58
3.7 Solubility of Metal Salts 64
3.8 Electrochemical Properties 66
3.9 Conclusion and Future Prospects 77
Acknowledgement 77
References 78

4 Electrodeposition of Metals 83
Thomas Schubert, Sherif Zein, El Abedin, Andrew P. Abbott,
Katy J. McKenzie, Karl S. Ryder, and Frank Endres
4.1 Electrodeposition in AlCl3-based Ionic Liquids 84
4.2 Electrodeposition of Metals in Air- and Water-stable Ionic Liquids 92
4.3 Deposition of Metals from Non-chloroaluminate Eutectic Mixtures 103
4.4 Troublesome Aspects 114
References 120

5 Electrodeposition of Alloys 125
I.-Wen Sun, and Po-Yu Chen
5.1 Introduction 125
5.2 Electrodeposition of Al-containing Alloys from Chloroaluminate Ionic Liquids 126
5.3 Electrodeposition of Zn-containing Alloys from Chlorozincate Ionic Liquids 132
5.4 Fabrication of a Porous Metal Surface by Electrochemical Alloying and De-alloying 137
5.5 Nb–Sn 139
5.6 Air- and Water-stable Ionic Liquids 140
5.7 Summary 145
References 145

6 Electrodeposition of Semiconductors in Ionic Liquids 147
Natalia Borisenko, Sherif Zein El Abedin, and Frank Endres
6.1 Introduction 147
6.2 Gallium Arsenide 149
6.3 Indium Antimonide 149
6.4 Aluminum Antimonide 150
6.5 Zinc Telluride 150
6.6 Cadmium Telluride 151
6.7 Germanium 151
6.8 Silicon 155
6.9 Grey Selenium 160
6.10 Conclusions 164
References 164

7 Conducting Polymers 167
Jennifer M. Pringle, Maria Forsyth, and Douglas R. MacFarlane
7.1 Introduction 167
7.2 Electropolymerization – General Experimental Techniques 171
Contents

7.3 Synthesis of Conducting Polymers 177
7.4 Characterization 191
7.5 Future Directions 203
7.6 Conclusions 207
References 208

8 Nanostructured Metals and Alloys Deposited from Ionic Liquids 213
Rolf Hempelmann, and Harald Natter
8.1 Introduction 213
8.2 Pulsed Electrodeposition from Aqueous Electrolytes 215
8.3 Special Features of Ionic Liquids as Electrolytes 220
8.4 Nanocrystalline Metals and Alloys from Chlorometallate-based Ionic Liquids 222
8.5 Nanocrystalline Metals from Air- and Water-stable Ionic Liquids 227
8.6 Conclusion and Outlook 234
Acknowledgement 235
References 235

9 Electrodeposition on the Nanometer Scale: In Situ Scanning Tunneling Microscopy 239
Frank Endres, and Sherif Zein El Abedin
9.1 Introduction 239
9.2 In situ STM in [Py1,4] TFSA 241
9.3 Electrodeposition of Aluminum 245
9.4 Electrodeposition of Tantalum 250
9.5 Electrodeposition of Poly(p-phenylene) 252
9.6 Summary 256
References 256

10 Plasma Electrochemistry with Ionic Liquids 259
Jürgen Janek, Marcus Rohnke, Manuel Pölleth, and Sebastian A. Meiss
10.1 Introduction 259
10.2 Concepts and Principles 260
10.3 Early Studies 265
10.4 The Stability of Ionic Liquids in Plasma Experiments 269
10.5 Plasma Electrochemical Metal Deposition in Ionic Liquids 274
10.6 Conclusions and Outlook 282
Acknowledgement 283
References 283

11 Technical Aspects 287
Debbie S. Silvester, Emma I. Rogers, Richard G. Compton, Katy J. McKenzie, Karl S. Ryder, Frank Endres, Douglas MacFarlane, and Andrew P. Abbott
11.1 Metal Dissolution Processes/Counter Electrode Reactions 287
11.2 Reference Electrodes for Use in Room-temperature Ionic Liquids 296
11.3 Process Scale Up 310
11.4 Towards Regeneration and Reuse of Ionic Liquids in Electroplating 319
11.5 Impurities 334
Appendix: Protocol for the Deposition of Zinc from a Type III Ionic Liquid 344
References 345

12 Plating Protocols 353
Frank Endres, Sherif Zein El Abedin, Q. Liu, Douglas R. MacFarlane, Karl S. Ryder, and Andrew P. Abbott
12.1 Electrodeposition of Al from 1-Ethyl-3-methylimidazolium chloride/AlCl₃ 353
12.2 Electrodeposition of Al from 1-Butyl-3-methylimidazolium chloride–AlCl₃ – Toluene 356
12.3 Electrodeposition of Al from 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide/AlCl₃ 358
12.4 Electrodeposition of Al from 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/AlCl₃ 360
12.5 Electrodeposition of Li from 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/Lithium bis(trifluoromethylsulfonyl)amide 362
12.6 Electrodeposition of Ta from 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 364
12.7 Electrodeposition of Zinc Coatings from a Choline Chloride: Ethylene Glycol-based Deep Eutectic Solvent 365
References 367

13 Future Directions and Challenges 369
Frank Endres, Andrew P. Abbott, and Douglas MacFarlane
13.1 Impurities 369
13.2 Counter Electrodes/Compartments 370
13.3 Ionic Liquids for Reactive (Nano-)materials 371
13.4 Nanomaterials/Nanoparticles 372
13.5 Cation/Anion Effects 373
13.6 Polymers for Batteries and Solar Cells 373
13.7 Variable Temperature Studies 374
13.8 Intrinsic Process Safety 374
13.9 Economics (Price, Recycling) 375
13.10 Which Liquid to Start With? 375
13.11 Fundamental Knowledge Gaps 376

Subject Index 379