Electromagnetic Field Interaction with Transmission Lines

From classical theory to HF radiation effects

Edited by

F Rachidi & S Tkachenko

WIT PRESS Southampton, Boston
PART I: CLASSICAL TRANSMISSION LINE THEORY

Chapter 1
Derivation of telegrapher’s equations and field-to-transmission line interaction

1 Transmission line approximation .. 3

2 Single-wire line above a perfectly conducting ground 5
 2.1 Taylor, Satterwhite and Harrison model .. 6
 2.1.1 Derivation of the first field-to-transmission line coupling (generalized telegrapher’s) equation 6
 2.1.2 Derivation of the second field-to-transmission line coupling equation ... 8
 2.1.3 Equivalent circuit .. 9
 2.2 Agrawal, Price and Gurbaxani model .. 10
 2.3 Rachidi model .. 11

3 Contribution of the different electromagnetic field components 12

4 Inclusion of losses ... 13

5 Case of multiconductor lines ... 15

6 Time-domain representation of the coupling equations 17

7 Frequency-domain solutions ... 18
 7.1 Green’s functions ... 18
 7.2 BLT equations .. 19

8 Time-domain solutions .. 20

9 Conclusions ... 21
Chapter 2
Surge propagation and crosstalk in multiconductor transmission lines above ground ... 23
Nelson Theethayi & Rajeev Thottappillil

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Telegrapher’s or transmission line equations for MTL systems</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>Expressions for internal impedance of wires</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>External impedance and admittance of wires above finitely conducting ground</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Carson’s ground impedance expression for low-frequency pulse propagation studies</td>
<td>31</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Sunde’s ground impedance expression for high-frequency pulse propagation studies</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Asymptotic nature of ground impedance and the concept of penetration depth of fields in the ground</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Limits of transmission line approximation for overhead wires</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Ground admittance for above ground wires</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Complete per unit transmission line representation and the sensitivity of each transmission line parameters</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Transmission line equations time domain for wires above ground</td>
<td>41</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Time domain transient ground impedance</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Time domain numerical solutions for transmission line equations</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Finite difference time domain method</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Frequency domain solutions for MTL systems</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison between direct frequency domain solutions and FDTD method</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>Crosstalk in MTL systems</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Crosstalk under weak coupling conditions and for electrically short lines</td>
<td>55</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Crosstalk due to common impedance coupling</td>
<td>55</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Crosstalk due to capacitive coupling</td>
<td>57</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Crosstalk due to inductive coupling</td>
<td>60</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Capacitive and inductive crosstalk combinations</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Crosstalk under strong coupling conditions</td>
<td>67</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Case 1: influence of receptor height</td>
<td>71</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Case 2: influence of finitely conducting ground</td>
<td>72</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Case 3: influence of receptor terminal loads</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>Concluding remarks</td>
<td>74</td>
</tr>
</tbody>
</table>
Chapter 3
Surge propagation in multiconductor transmission lines below ground .. 79
Nelson Theethayi & Rajeev Thottappillil

1 Introduction ... 79
2 Telegrapher’s or transmission line equations for the buried wires 81
 2.1 Ground impedance for buried wires 83
 2.1.1 Asymptotic analysis ... 86
 2.2 Ground admittance for buried wires 87
3 Possible limits of transmission line approximation for buried wires 91
4 Coupling to cable core through cable shields 93
 4.1 Generalized double shield three-core cable 95
 4.1.1 Telegrapher’s equations for shielded cables 95
 4.1.2 Transmission line impedance and admittance
 parameters for shielded cables 97
 4.2 An example of RG-58 cable .. 101
4.3 Influence of shield thickness in the coupling phenomena 105
4.4 A simple measurement for estimating inductance and
 capacitance matrix elements for internal conductors of cables 107
 4.4.1 MTL capacitance matrix estimation 108
 4.4.2 MTL inductance matrix estimation 108
5 Some additional cases of ground impedance based on wire geometry ... 109
 5.1 Impedance with wires on the ground 109
 5.2 Mutual impedance with one wire above ground and the
 other below the ground ... 111
6 Some examples ... 111
 6.1 Time domain simulation of pulse propagation in bare and
 insulated wires ... 111
 6.2 A practical crosstalk problem .. 113
7 Concluding remarks .. 118

PART II: ENHANCED TRANSMISSION LINE THEORY

Chapter 4
High-frequency electromagnetic coupling to transmission lines:
 electrodynamics correction to the TL approximation 123
S.V. Tkachenko, F. Rachidi & J.B. Nitsch

1 Introduction ... 123
2 High-frequency electromagnetic field coupling with a straight wire
 above a perfectly conducting ground 124
 2.1 Derivation of an electric field integral equation in a TL-like
 form for a straight thin wire of finite length 124
 2.2 Iterative solution of the coupling equations in frequency-domain ... 129
Chapter 5
High-frequency electromagnetic field coupling to long loaded non-uniform lines: an asymptotic approach .. 159
S.V. Tkachenko, F. Rachidi & J.B. Nitsch

1 Introduction .. 159
2 High-frequency electromagnetic field coupling to a long loaded line.... 161
 2.1 Asymptotic approach ... 161
 2.1.1 Solution for the induced current in the asymptotic region ... 161
 2.1.2 Expression for the induced current at the line terminals (regions I and III) ... 166
 2.1.3 Summary of the proposed procedure to determine the induced current along the line and at the line terminals 168
 2.2 Accuracy of the proposed three-term expression for the induced current along the asymptotic region of the line................. 168
 2.3 Application: response of a long terminated line to an external plane wave .. 169
3 Asymptotic approach for a non-uniform transmission line 172
4 Conclusion ... 178

Appendix 1: Determination of coefficients R_+, R_-, C_+, C_- as a function of coefficients I_1 and I_2 ... 179
Appendix 2: Derivation of analytical expressions for the coefficients C_+ and C_- for a semi-infinite open-circuited line, using the iterative method presented in Chapter 4 ... 180
Appendix 3: Analytical expression for the induced current along the asymptotic region of the line containing a lumped impedance 182