Nanostructured Materials in Electrochemistry

Edited by
Ali Eftekhar
Contents

Foreword by R. Alkire V
Foreword by Y. Gogotsi and P. Simon VII
Preface XIX
List of Contributors XXIII

1 Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing 1
Grzegorz D. Sulka
1.1 Introduction 1
1.2 Anodizing of Aluminum and Anodic Porous Alumina Structure 6
1.2.1 Types of Anodic Oxide Film 7
1.2.2 General Structure of Anodic Porous Alumina 8
1.2.2.1 Pore Diameter 9
1.2.2.2 Interpore Distance 12
1.2.2.3 Wall Thickness 13
1.2.2.4 Barrier Layer Thickness 14
1.2.2.5 Porosity 17
1.2.2.6 Pore Density 19
1.2.3 Incorporation of Anions 20
1.2.4 Cell-Wall Structure 23
1.2.5 Crystal Structure of Oxide 26
1.2.6 Density and Charge of Oxide Film 26
1.2.7 Miscellaneous Properties of Anodic Porous Alumina 27
1.3 Kinetics of Self-Organized Anodic Porous Alumina Formation 28
1.3.1 Anodizing Regimes and Current/Potential-Time Transient 28
1.3.2 Pores Initiation and Porous Alumina Growth 32
1.3.2.1 Historical Theories 32
1.3.2.2 Field-Assisted Mechanism of Porous Film Growth 34
1.3.2.3 Steady-State Growth of Porous Alumina 36
1.3.2.4 Growth Models Proposed by Patemporakis and Colleagues 39
Contents

1.3.2.5 Other Phenomenological Models of Porous Alumina Growth 41
1.3.2.6 Other Theoretical Models of Porous Alumina Growth 44
1.3.3 Volume Expansion: The Pilling–Bedworth Ratio (PBR) 45
1.3.4 Rates of Oxide Formation and Oxide Dissolution 46
1.4 Self-Organized and Prepatterned-Guided Growth of Highly Ordered Porous Alumina 50
1.4.1 Aluminum Pre-Treatment 53
1.4.2 Self-Organized Anodizing of Aluminum 58
1.4.2.1 Structural Features of Self-Organized AAO 60
1.4.2.2 Order Degree and Defects in Nanopore Arrangement 74
1.4.3 Post-Treatment of Anodic Porous Alumina 81
1.4.3.1 Removal of the Aluminum Base 81
1.4.3.2 Removal of the Barrier Layer 82
1.4.3.3 Structure and Thinning of the Barrier Layer 85
1.4.3.4 Re-Anodization of Anodic Porous Alumina 87
1.5 AAO Template-Assisted Fabrication of Nanostructures 88
1.5.1 Metal Nanodots, Nanowires, Nanorods, and Nanotubes 89
1.5.2 Metal Oxide Nanodots, Nanowires, and Nanotubes 91
1.5.3 Semiconductor Nanodots, Nanowires, Nanopillars, and Nanopore Arrays 91
1.5.4 Polymer, Organic and Inorganic Nanowires and Nanotubes 93
1.5.5 Carbon Nanotubes 94
1.5.6 Photonic Crystals 95
1.5.7 Other Nanomaterials (Metallic and Diamond Membranes, Biomaterials) 95
References 97

2 Nanostructured Materials Synthesized Using Electrochemical Techniques 117

Cristiane P. Oliveira, Renato G. Freitas, Luiz H.C. Mattoso, and Ernesto C. Pereira

2.1 Introduction 117
2.2 Anodic Synthesis 119
2.2.1 Electropolishing and Anodization 119
2.2.2 Porous Anodic Alumina 128
2.2.2.1 Porous Anodic Alumina as Template 135
2.2.2.2 Porous Anodic Alumina to Create Nanodevices 137
2.3 Cathodic Synthesis 144
2.3.1 Nanowires 144
2.3.1.1 Template Procedures to Prepare Nanowires 145
2.3.1.2 Magnetic Nanowires 147
2.3.1.3 Nanotubes 152
2.3.2 Multilayers 158
3 Top-Down Approaches to the Fabrication of Nanopatterned Electrodes 187
Yvonne H. Lanyon and Damien W.M. Arrigan
3.1 Introduction 187
3.2 Considerations for Choosing a Nanoelectrode Fabrication Strategy 189
3.3 Nanoelectrode Fabrication Using Top-Down Approaches 190
3.3.1 E-Beam Lithography 191
3.3.2 Focused Ion Beam Lithography 196
3.3.3 Nano-Imprint Lithography 199
3.3.4 Nanogap Electrodes 203
3.3.5 Non-High-Resolution Techniques 205
3.4 Applications 206
3.5 Conclusions 207
References 209

4 Template Synthesis of Magnetic Nanowire Arrays 211
Sima Valizadeh, Mattias Strömberg, and Maria Strömme
4.1 Introduction 211
4.2 Electrochemical Synthesis of Nanowires 213
4.2.1 Fabrication of Nanoelectrodes 213
4.2.2 Reactions, Diffusion, and Nucleation in the Electrochemical Deposition of Co Nanowires 214
4.2.2.1 Theoretical Considerations of Spherical Diffusion at a Nanode Array 214
4.2.3 Electrodeposition of Magnetic Multilayered Nanowire Arrays 222
4.2.3.1 Electrodeposition of 8 nm Ag/15 nm Co Multilayered Nanowire Arrays (Wire Diameter 120 nm) 224
4.2.3.2 Template Synthesis of 2 nm Au/4 nm Co Multilayered Nanowire Arrays (Wire Diameter 110 nm) 225
4.3 Physical Properties of Electrodeposited Nanowires 231
4.3.1 Magnetic Properties of Nanowire Arrays 231
4.3.2 Electrical Transport Measurements on Single Nanowires Using Focused Ion Beam Deposition 234
4.4 Summary 238
References 238
5 Electrochemical Sensors Based on Unidimensional Nanostructures 243
Arnaldo C. Pereira, Alexandre Kisner, Nelson Durán, and Lauro T. Kubota

5.1 Introduction 243
5.2 Preparation of Nanowires and Nanotubes by Template-Based Synthesis 243
5.2.1 Template-Based Mesoporous Materials 244
5.2.1.1 The Memorable Marks of Electrochemical Nanowires 247
5.2.2 Nanowires as Nanoelectrodes 247
5.2.2.1 Electrochemical Aspects of Nanoelectrodes 248
5.2.2.2 Nanoelectrodes Based on Chemically Modified Surface 249
5.3 An Electrochemical Step Edge Approach 251
5.3.1 The Predeterminant Mechanism 251
5.3.2 Nanowire-Based Gas Sensors 253
5.4 Atomic Metal Wires from Electrochemical Etching/Deposition 255
5.4.1 Sensing Molecular Adsorption with Quantized Nanojunction 257
5.5 Future Prospects and Promising Technologies 259
5.6 Concluding Remarks 261
References 262

6 Self-Organized Formation of Layered Nanostructures by Oscillatory Electrodeposition 267
Shuji Nakanishi

6.1 Introduction 267
6.1.1 Self-Organized Formation of Ordered Nanostructures 267
6.1.2 Dynamic Self-Organization in Electrochemical Reactions 268
6.1.3 The Important Role of Negative Differential Resistance (NDR) in Electrochemical Oscillations 271
6.1.4 Outline of the Present Chapter 272
6.2 Current Oscillation Observed in H₂O₂ Reduction on a Pt Electrode 273
6.3 Nanoperiod Cu–Sn Alloy Multilayers 275
6.4 Nano-Scale Layered Structures of Iron-Group Alloys 279
6.5 Other Systems 283
6.5.1 Nano-Multilayers of Cu/Cu₂O 283
6.5.2 Ag–Sb Alloy with Periodical Modulation of the Elemental Ratio 285
6.6 Summary 286
References 286

7 Electrochemical Corrosion Behaviour of Nanocrystalline Materials 291
Omar Elkedim

7.1 Introduction 291
7.2 Electrochemical Corrosion Behavior of Nanocrystalline Materials 292
7.3 Conclusions 315
References 315
8 Nanoscale Engineering for the Mechanical Integrity of Li-Ion Electrode Materials 319
Katerina E. Aifantis and Stephen A. Hackney

8.1 Introduction 319
8.2 Electrochemical Cycling and Damage of Electrodes 320
8.2.1 Fracture Process of Planar Electrodes 320
8.2.2 Electrochemical Cycling of Particulate Electrodes 323
8.3 Electrochemical Properties for Nanostructured Anodes 330
8.3.1 Nanostructured Metal Anodes 331
8.3.1.1 Sn and Sn-Sb Anodes at the Nanoscale 331
8.3.1.2 Si Anodes at the Nanoscale 331
8.3.1.3 Bi Anodes at the Nanoscale 333
8.3.2 Embedding/Encapsulating Active Materials in Less-Active Materials 334
8.3.2.1 Sn-Based Anodes 335
8.3.2.2 Si-Based Anodes 337
8.4 Modeling Internal Stresses and Fracture of Li-anodes 339
8.4.1 Stresses Inside the Matrix 339
8.4.2 Stable Crack Growth 341
8.4.3 Griffith’s Criterion 342
8.4.4 No Cracking 344
8.5 Conclusions and Future Outlook 345
References 345

9 Nanostructured Hydrogen Storage Materials Synthesized by Mechanical Alloying 349
Mieczyslaw Jurczyk and Marek Nowak

9.1 Introduction 349
9.1.1 The Aim of the Research 349
9.1.2 Types of Hydride 352
9.1.3 The Absorption–Desorption Process 353
9.1.4 Hydrides Based on Intermetallic Compounds of Transition Metals 354
9.1.5 Prospects for Nanostructured Metal Hydrides 355
9.2 The Fundamental Concept of the Hydride Electrode and the Ni-MH Battery 357
9.2.1 The Hydride Electrode 357
9.2.2 The Ni-MH Battery 357
9.2.2.1 Normal Charge–Discharge Reactions 357
9.2.2.2 Overcharge Reactions 357
9.2.2.3 Over-Discharge Reaction 358
9.3 An Overview of Hydrogen Storage Systems 358
9.3.1 The TiFe-Type System 359
9.3.2 The ZrV2-Type System 364
9.3.3 The LaNi5-Type System 366
10 Nanosized Titanium Oxides for Energy Storage and Conversion 387
Aurelien Du Pasquier
10.1 Introduction 387
10.2 Preparation of Nanosized Titanium Oxide Powders 387
10.2.1 Wet Chemistry Routes 387
10.2.2 Chemical Vapor Deposition 389
10.2.3 Vapor-Phase Hydrolysis 389
10.2.4 Physical Vapor Deposition 390
10.3 Other TiO₂ Nanostructures 390
10.4 Preparation of Nano-Li₄Ti₅O₁₂ 390
10.5 Nano-Li₄Ti₅O₁₂ Spinel Applications in Energy Storage Devices 393
10.5.1 Asymmetric Hybrid Supercapacitors 394
10.5.2 High-Power Li-Ion Batteries 396
10.6 Nano-TiO₂ Anatase for Solar Energy Conversion 398
10.6.1 TiO₂ Role in Dye-Sensitized Solar Cells 398
10.6.2 Trap-Limited Electron Transport in Nanosized TiO₂ 399
10.6.3 Electron Recombination in Dye-Sensitized Solar Cells 400
10.6.4 Preparation of Flexible TiO₂ Photoanodes 401
10.6.4.1 Sol–Gel Additives 402
10.6.4.2 Mechanical Compression 403
10.6.4.3 Metallic Foils 403
10.7 Conclusions 404
References 405

11 DNA Biosensors Based on Nanostructured Materials 409
Adriana Ferancová and Ján Labuda
11.1 Introduction 409
11.2 Nanomaterials in DNA Biosensors 410
11.2.1 Carbon Nanotubes 410
11.2.1.1 Electronic Properties and Reactivity of CNTs 411
11.2.1.2 CNT–DNA Interaction 412
11.2.1.3 CNTs in DNA Biosensors 413
11.2.2 Fullerenes 422
11.2.3 Diamond and Carbon Nanofibers 423
11.2.3.1 Diamond 423
11.2.3.2 Carbon Nanofibers 424
11.2.4 Clays 424