ANTENNAS AND PROPAGATION
FOR WIRELESS COMMUNICATION SYSTEMS

Second Edition

SIMON R. SAUNDERS,
University of Surrey, Guildford, UK

ALEJANDRO ARAGÓN-ZAVALA,
Tecnológico de Monterrey, Campus Querétaro, Mexico

John Wiley & Sons, Ltd
Contents

Preface to the First Edition xix

Preface to the Second Edition xxi

1. Introduction: The Wireless Communication Channel 1
 1.1 INTRODUCTION 1
 1.2 CONCEPT OF A WIRELESS CHANNEL 2
 1.3 THE ELECTROMAGNETIC SPECTRUM 4
 1.4 HISTORY 5
 1.5 SYSTEM TYPES 7
 1.6 AIMS OF CELLULAR SYSTEMS 8
 1.7 CELLULAR NETWORKS 9
 1.8 THE CELLULAR CONCEPT 9
 1.9 TRAFFIC 13
 1.10 MULTIPLE ACCESS SCHEMES AND DUPLEXING 17
 1.10.1 Frequency Division Multiple Access 17
 1.10.2 Time Division Multiple Access 18
 1.10.3 Code Division Multiple Access 18
 1.11 AVAILABLE DATA RATES 19
 1.12 STRUCTURE OF THIS BOOK 20
 1.13 CONCLUSION 22
 REFERENCES 22
 PROBLEMS 23

2. Properties of Electromagnetic Waves 25
 2.1 INTRODUCTION 25
 2.2 MAXWELL'S EQUATIONS 25
 2.3 PLANE WAVE PROPERTIES 26
 2.3.1 Field Relationships 27
 2.3.2 Wave Impedance 27
CONTENTS

4.4 PRACTICAL DIPOLES 73
 4.4.1 Dipole Structure 73
 4.4.2 Current Distribution 74
 4.4.3 Radiation Pattern 74
 4.4.4 Input Impedance 77
4.5 ANTENNA ARRAYS 77
 4.5.1 Introduction 77
 4.5.2 Linear and Planar Arrays 77
 4.5.3 The Uniform Linear Array 77
 4.5.4 Parasitic Elements: Uda–Yagi Antennas 78
 4.5.5 Reflector Antennas 79
 4.5.6 Monopole Antennas 80
 4.5.7 Corner Reflectors 80
 4.5.8 Parabolic Reflector Antennas 81
4.6 HORN ANTENNAS 82
4.7 LOOP ANTENNAS 83
4.8 HELICAL ANTENNAS 83
4.9 PATCH ANTENNAS 84
4.10 CONCLUSION 85
REFERENCES 85
PROBLEMS 86

5. Basic Propagation Models 89
 5.1 INTRODUCTION 89
 5.2 DEFINITION OF PATH LOSS 89
 5.3 A BRIEF NOTE ON DECIBELS 92
 5.4 NOISE MODELLING 93
 5.5 FREE SPACE LOSS 97
 5.6 PLANAR EARTH LOSS 98
 5.7 LINK BUDGETS 101
 5.8 CONCLUSION 103
REFERENCE 103
PROBLEMS 103

6. Terrestrial Fixed Links 105
 6.1 INTRODUCTION 105
 6.2 PATH PROFILES 105
 6.3 TROPOSPHERIC REFRACTION 108
 6.3.1 Fundamentals 108
 6.3.2 Time Variability 111
 6.3.3 Ducting and Multipath 111
 6.4 OBSTRUCTION LOSS 113
 6.5 APPROXIMATE MULTIPLE KNIFE-EDGE DIFFRACTION 115
 6.5.1 The Deygout Method 115
 6.5.2 The Causebrook Correction 116
 6.5.3 The Giovanelli Method 117
8.4.2 The Ikegami Model 173
8.4.3 Rooftop Diffraction 174
8.4.4 The Flat Edge Model 175
8.4.5 The Walfisch–Bertoni Model 178
8.4.6 COST 231/Walfisch–Ikegami Model 180

8.5 ITU-R MODELS 181
8.5.1 ITU-R Recommendation P.1411 181
8.5.2 ITU-R Recommendation P.1546 182

8.6 COMPARISON OF MODELS 182
8.7 COMPUTERISED PLANNING TOOLS 183
8.8 CONCLUSION 183
REFERENCES 183
PROBLEMS 185

9. Shadowing 187
9.1 INTRODUCTION 187
9.2 STATISTICAL CHARACTERISATION 187
9.3 PHYSICAL BASIS FOR SHADOWING 189
9.4 IMPACT ON COVERAGE 189
9.4.1 Edge of Cell 189
9.4.2 Whole Cell 192
9.5 LOCATION VARIABILITY 195
9.6 CORRELATED SHADOWING 196
9.6.1 Serial Correlation 197
9.6.2 Site-to-Site Correlation 199
9.7 CONCLUSION 205
REFERENCES 205
PROBLEMS 206

10. Narrowband Fast Fading 209
10.1 INTRODUCTION 209
10.2 BASEBAND CHANNEL REPRESENTATION 209
10.3 THE AWGN CHANNEL 210
10.4 THE NARROWBAND FADING CHANNEL 213
10.5 WHEN DOES FADING OCCUR IN PRACTICE? 214
10.6 THE RAYLEIGH DISTRIBUTION 215
10.7 DISTRIBUTION OF THE SNR FOR A RAYLEIGH CHANNEL 218
10.8 THE RICE DISTRIBUTION 221
10.9 THE NAKAGAMI-\(m\) DISTRIBUTION 226
10.10 OTHER FADING DISTRIBUTIONS 227
10.11 SECOND-ORDER FAST-FADING STATISTICS 227
10.11.1 The Doppler Effect 228
10.11.2 The Classical Doppler Spectrum 230
10.12 AUTOCORRELATION FUNCTION 236
10.13 NARROWBAND MOBILE RADIO CHANNEL SIMULATIONS 238
10.14 CONCLUSION 239
14.2.2 Local Shadowing Effects 333
14.2.3 Local Multipath Effects 334
14.3 EMPIRICAL NARROWBAND MODELS 336
14.4 STATISTICAL MODELS 337
 14.4.1 Loo Model 339
 14.4.2 Corazza Model 341
 14.4.3 Lutz Model 341
14.5 SHADOWING STATISTICS 345
14.6 PHYSICAL-STATISTICAL MODELS FOR BUILT-UP AREAS 345
 14.6.1 Building Height Distribution 348
 14.6.2 Time-Share of Shadowing 349
 14.6.3 Time Series Model 350
14.7 WIDEBAND MODELS 353
14.8 MULTI-SATELLITE CORRELATIONS 354
14.9 OVERALL MOBILE SATELLITE CHANNEL MODEL 356
14.10 CONCLUSION 357
REFERENCES 357
PROBLEMS 359

15. Antennas for Mobile Systems 361
 15.1 INTRODUCTION 361
 15.2 MOBILE TERMINAL ANTENNAS 361
 15.2.1 Performance Requirements 361
 15.2.2 Small Antenna Fundamentals 362
 15.2.3 Dipoles 364
 15.2.4 Helical Antennas 366
 15.2.5 Inverted-F Antennas 366
 15.2.6 Patches 368
 15.2.7 Mean Effective Gain (MEG) 368
 15.2.8 Human Body Interactions and Specific Absorption Rate (SAR) 370
 15.2.9 Mobile Satellite Antennas 374
 15.3 BASE STATION ANTENNAS 376
 15.3.1 Performance Requirements in Macrocells 376
 15.3.2 Macrocell Antenna Design 377
 15.3.3 Macrocell Antenna Diversity 380
 15.3.4 Microcell Antennas 381
 15.3.5 Picocell Antennas 382
 15.3.6 Antennas for Wireless Lan 385
 15.4 CONCLUSION 386
REFERENCES 386
PROBLEMS 388

16. Overcoming Narrowband Fading via Diversity 391
 16.1 INTRODUCTION 391
 16.2 CRITERIA FOR USEFUL BRANCHES 392
16.3 SPACE DIVERSITY
16.3.1 General Model 393
16.3.2 Mobile Station Space Diversity 395
16.3.3 Handset Diversity Antennas 397
16.3.4 Base Station Space Diversity 397
16.4 POLARISATION DIVERSITY 399
16.4.1 Base Station Polarisation Diversity 399
16.4.2 Mobile Station Polarisation Diversity 400
16.5 TIME DIVERSITY 402
16.6 FREQUENCY DIVERSITY 403
16.7 COMBINING METHODS 403
16.7.1 Selection Combining 403
16.7.2 Switched Combining 405
16.7.3 Equal-Gain Combining 406
16.7.4 Maximum Ratio Combining 407
16.7.5 Comparison of Combining Methods 408
16.8 DIVERSITY FOR MICROWAVE LINKS 409
16.9 MACRODIVERSITY 410
16.10 TRANSMIT DIVERSITY 410
16.11 CONCLUSION 411
REFERENCES 411
PROBLEMS 412

17. Overcoming Wideband Fading 413
17.1 INTRODUCTION 413
17.2 SYSTEM MODELLING 413
17.2.1 Continuous-Time System Model 413
17.2.2 Discrete-Time System Model 414
17.2.3 First Nyquist Criterion 415
17.3 LINEAR EQUALISERS 416
17.3.1 Linear Equaliser Structure 416
17.3.2 Zero-Forcing Equaliser 417
17.3.3 Least Mean Square Equaliser 418
17.4 ADAPTIVE EQUALISERS 419
17.4.1 Direct Matrix Inversion 420
17.4.2 LMS Algorithm 421
17.4.3 Other Convergence Algorithms 421
17.5 NON-LINEAR EQUALISERS 422
17.5.1 Decision Feedback 423
17.5.2 Maximum Likelihood Sequence Estimator 423
17.5.3 Viterbi Equalisation 424
17.6 RAKE RECEIVERS 427
17.7 OFDM RECEIVERS 430
17.8 CONCLUSION 435
REFERENCES 435
PROBLEMS 436
18. Adaptive Antennas 437
18.1 INTRODUCTION 437
18.2 BASIC CONCEPTS 437
18.3 ADAPTIVE ANTENNA APPLICATIONS 438
 18.3.1 Example of Adaptive Antenna Processing 438
 18.3.2 Spatial Filtering for Interference Reduction 440
 18.3.3 Space Division Multiple Access 441
 18.3.4 Multiple-Input Multiple-Output Systems 441
18.4 OPTIMUM COMBINING 443
 18.4.1 Formulation 443
 18.4.2 Steering Vector for Uniform Linear Array 445
 18.4.3 Steering Vector for Arbitrary Element Positions 446
 18.4.4 Optimum Combiner in a Free Space Environment 447
 18.4.5 Optimum Combiner in a Fading Environment 449
 18.4.6 Implementation of Adaptive Antennas 450
 18.4.7 Adaptive Antenna Channel Parameters 450
18.5 MULTIPLE-INPUT MULTIPLE-OUTPUT SYSTEMS 453
 18.5.1 MIMO Signal Model 453
 18.5.2 MIMO Channel Capacity 455
 18.5.3 Trade-Off Between Diversity and Capacity for MIMO 458
 18.5.4 Particular STC Schemes 459
 18.5.5 MIMO Channel Modelling 460
 18.5.6 MIMO Channel Models for Specific Systems 462
 18.5.7 Impact of Antennas on MIMO Performance 464
18.6 ADAPTIVE ANTENNAS IN A PRACTICAL SYSTEM 465
18.7 CONCLUSION 466
REFERENCES 466
PROBLEMS 468

19. Channel Measurements for Mobile Systems 469
19.1 INTRODUCTION 469
19.2 APPLICATIONS FOR CHANNEL MEASUREMENTS 469
 19.2.1 Tuning Empirical Path Loss Models 469
 19.2.2 Creating Synthetic Channel Models 470
 19.2.3 Existing Coverage 471
 19.2.4 Design Survey 471
19.3 IMPACT OF MEASUREMENT INACCURACIES 471
19.4 SIGNAL SAMPLING ISSUES 473
 19.4.1 Estimators of the Local Mean 473
 19.4.2 Sampling Rate 476
19.5 MEASUREMENT SYSTEMS 479
 19.5.1 Narrowband Channel Sounding 479
 19.5.2 Wideband Channel Measurement Techniques 480
 19.5.3 Other Measurements 481
19.6 EQUIPMENT CALIBRATION AND VALIDATION 481
 19.6.1 General 481
 19.6.2 Transmitters 482