B. Lüthi

Physical Acoustics in the Solid State

With 188 Figures

Springer
Contents

1 Introduction ... 1

2 Experimental Techniques .. 5
 2.1 Transducer ... 6
 2.2 Sound Velocity and Attenuation, Experimental Techniques ... 7
 2.2.1 Simple Ultrasonic Set-Up 7
 2.2.2 Relative Sound Velocity and Attenuation Changes 9
 2.2.3 Ultrasonics at Very Low Temperatures 11
 2.2.4 Absolute Sound Velocity Measurements 12
 2.2.5 Resonant Ultrasound Spectroscopy, RUS 14
 2.2.6 Vibrating Reed Technique 16
 2.3 Phonon Echoes ... 16
 2.4 Ultrasonics in Pulsed Magnetic Fields 17
 2.5 Surface Acoustic Wave Generation and Detection 20
 2.6 Microwave Ultrasonics .. 21
 2.7 Brillouin Scattering .. 23
 2.8 Thermal Expansion and Magneto-striction,
 Thermal Conductivity .. 25
 2.8.1 Thermal Expansion and Magneto-striction 25
 2.8.2 Thermal Conductivity 25

3 Elasticity ... 27
 3.1 Strains, Stresses and Elastic Constants 27
 3.2 Symmetry Aspect ... 32
 3.3 Third Order Elastic Constants 36
 3.4 Elastic Stability, Elastic Isotropy 37
 3.5 Surface Acoustic Waves, SAW 39
 3.6 Lattice Dynamics ... 44
 3.6.1 Phonon Dispersion ... 44
 3.6.2 Debye Theory of Lattice Dynamics 45

4 Thermodynamics and Phase Transitions 47
 4.1 Thermodynamic Potentials .. 47
 4.2 Background Elastic Constant and Attenuation 49
 4.2.1 Background Elastic Constant, Thermal Expansion
 and Specific Heat ... 49
4.2.2 Sound Dissipation Due to Phonons in Insulators

4.3 Landau Theory, Strain–Order Parameter Coupling

4.3.1 Landau Theory for Second Order Phase Transitions
4.3.2 Scaling Relations
4.3.3 Landau Theory for a First Order Phase Transition
4.3.4 Strain–Order Parameter Coupling
4.3.5 Fluctuation Effects
4.3.6 Landau–Khalatnikov Theory

4.4 Ginzburg Criterion and Marginal Dimensionality

4.5 Adiabatic and Isothermal Quantities

5 Acoustic Waves in the Presence of Magnetic Ions

5.1 Strain–Magnetic Ion Interaction
5.1.1 Magnetic Interactions
5.1.2 Single Ion–Strain Interaction
5.1.3 Exchange Striction

5.2 Thermodynamic Functions for 4f–Rare Earth Ions in the Presence of Crystal Fields
5.2.1 Specific Heat and Thermal Expansion
5.2.2 Magnetic Susceptibility and Elastic Constants
5.2.3 Other Experimental Methods to Determine Magneto-elastic Coupling Constants
5.2.4 Magneto-elastic Coupling Constants

5.3 Susceptibilities with Interactions
5.4 External and Internal Strains
5.5 Paramagnetic Spin–Phonon Interaction for 3d-Transition Metal Ions in Crystals
5.6 Nuclear Acoustic Resonance

6 Ultrasonics at Magnetic Phase Transitions

6.1 Magnetic Phase Transition
6.1.1 Spin–Phonon Coupling Mechanism
6.1.2 Critical Attenuation Coefficient
6.1.3 Sound Velocity Effects near Magnetic Phase Transitions

6.2 Spin Reorientation Phase Transition
6.3 Sound Propagation in the Spin-Density Wave Anti-ferromagnet Chromium

7 Ultrasonics at Structural Transitions

7.1 Charge Order

7.2 Cooperative Jahn–Teller Effect and Quadrupolar (Orbital) Transition
7.2.1 Case of Transition Metal Compounds
7.2.2 Case of Rare Earth Compounds
Higher Order Multi-pole–strain Coupling
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Ultrasonics in Superconductors</td>
<td>223</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>10.2</td>
<td>Electron–Strain Coupling in Superconductors</td>
<td>225</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Elastic Constants</td>
<td>226</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Ultrasonic Attenuation</td>
<td>227</td>
</tr>
<tr>
<td>10.3</td>
<td>Conventional Superconductors</td>
<td>229</td>
</tr>
<tr>
<td>10.4</td>
<td>High Temperature Superconductors</td>
<td>237</td>
</tr>
<tr>
<td>10.5</td>
<td>Sound Wave Interaction with the Flux Line Lattice</td>
<td>241</td>
</tr>
<tr>
<td>10.6</td>
<td>Ultrasonic Surface Wave Attenuation in Superconductors</td>
<td>245</td>
</tr>
<tr>
<td>10.7</td>
<td>Unconventional Superconductivity</td>
<td>247</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Heavy Fermion Superconductivity</td>
<td>249</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Other Unconventional Superconductors</td>
<td>264</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Other Methods to Probe the Energy Gap Structure...</td>
<td>266</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Summary</td>
<td>267</td>
</tr>
<tr>
<td>11</td>
<td>Coupling to Collective Excitations</td>
<td>269</td>
</tr>
<tr>
<td>11.1</td>
<td>Plasmons and Helicons</td>
<td>269</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Dielectric Tensor</td>
<td>269</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Plasma Polariton</td>
<td>270</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Helicons and Alfven Waves</td>
<td>272</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Helicon–Phonon Interaction</td>
<td>273</td>
</tr>
<tr>
<td>11.2</td>
<td>Magneto-elastic Waves</td>
<td>275</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Ferromagnetic Spinwaves with Dipolar Interaction</td>
<td>275</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Magneto-static Modes</td>
<td>277</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Spinwave–Phonon Interaction</td>
<td>278</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Magneto-elastic Gap</td>
<td>280</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Experiments with Magneto-elastic Waves in a Ferrimagnet</td>
<td>282</td>
</tr>
<tr>
<td>11.2.6</td>
<td>High Power Level Effects</td>
<td>284</td>
</tr>
<tr>
<td>11.2.7</td>
<td>Sound Wave Experiments in Anti-ferromagnets</td>
<td>284</td>
</tr>
<tr>
<td>12</td>
<td>Ultrasonics in Low Dimensional Spin and Electronic Peierls-Systems</td>
<td>289</td>
</tr>
<tr>
<td>12.1</td>
<td>Magnetic Properties of Low Dimensional Spin Systems</td>
<td>290</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Uniform Chain</td>
<td>290</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Dimerized Chains</td>
<td>293</td>
</tr>
<tr>
<td>12.2</td>
<td>Temperature Dependence of Elastic Constants in Low Dimensional Spin Systems</td>
<td>297</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Temperature Dependence of Elastic Constants in Quasi One-Dimensional Spin Systems</td>
<td>297</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Case of Two-Dimensional Dimer Spin Systems</td>
<td>301</td>
</tr>
<tr>
<td>12.3</td>
<td>Magnetic Field Effects</td>
<td>307</td>
</tr>
<tr>
<td>12.4</td>
<td>Thermal Conductivity in Low Dimensional Spin Systems</td>
<td>316</td>
</tr>
<tr>
<td>12.5</td>
<td>Peierls and Spin Peierls Effects</td>
<td>320</td>
</tr>
<tr>
<td>12.6</td>
<td>Perovskite-Type Layer-Structure Materials</td>
<td>322</td>
</tr>
</tbody>
</table>
12.7 Bose–Einstein Condensation of Magnons in TlCuCl₃ 324
12.8 Conclusion ... 325

13 Symmetry Effects with Sound Waves 327
13.1 Magnetic Field Induced Symmetry Breaking 328
13.2 Rotationally Invariant Magneto-elastic Effects 331
13.3 Magneto-acoustic Birefringence Effects 336
13.3.1 Voigt–Cotton–Mouton Geometry 336
13.3.2 Faraday Geometry 339
13.4 Acoustical Activity .. 341
13.5 Non-reciprocal Surface Acoustic Wave Effects 343
13.6 Surface Acoustic Wave Effects
in the Integral and Fractional Quantum Hall Effect 346

14 Ultrasonic Propagation
in Tunneling Systems ... 351
14.1 Crystalline Systems ... 351
14.2 Amorphous Systems ... 354
14.3 Recent Developments .. 357
14.4 Spin-Glass .. 358
14.5 Quasi-crystals .. 358

15 Conclusion and Outlook ... 361

Appendix .. 363
A Mass Systems and Units ... 363
B Wave Equation for Sound Waves 365
C Elastic Constants and Symmetry Strains
for the Crystal Classes ... 367
D g-Factor, Steven’s Factors, CEF Operators 369
D.1 3d and 4f Ions: Landé \(g \) Factor, Steven’s Factors 369
D.2 Cubic CEF and Quadrupolar Operators 370
E Ultrasonic Attenuation in Metals 371
F Free Energy of Electrongas 373
G Order–Disorder Phase Transition 375

References ... 377

Index .. 413

Index of Materials .. 417