MODELING AND DESIGN TECHNIQUES FOR RF POWER AMPLIFIERS

Arvind Raghavan
Intel Corporation
Hudson, MA

Nuttapong Srirattana
RF Micro Devices
Greensboro, NC

Joy Laskar
Georgia Institute of Technology
Atlanta, GA

IEEE PRESS
CONTENTS

PREFACE ix

1 INTRODUCTION 1

1.1 Semiconductor Technology and RF Power Amplifier Design 2
1.2 Device Modeling 3
1.3 Power Amplifier IC Design 4
1.4 Power Amplifier Linearity 5
1.5 Modulation Schemes 5
1.6 Circuit Simulation 9
1.7 Load-Pull Measurements 10
References 13

2 DEVICE MODELING FOR CAD 15

2.1 Introduction 15
2.2 Bipolar Junction and Heterojunction Bipolar Transistors 16
2.3 Bipolar Device Models 18
 2.3.1 The Ebers–Moll Model 18
 2.3.2 The Gummel–Poon Model 20
 2.3.3 The VBIC Model 25
 2.3.4 MEXTRAM 29
 2.3.5 HICUM 32
2.4 MOSFET Device Physics 35
2.5 MOSFET Device Models 38
 2.5.1 The Level 1 Model 38
 2.5.2 The Level 2 and Level 3 Models 40

References
3 **EMPIRICAL MODELING OF BIPOLAR DEVICES**

3.1 Introduction
 3.1.1 Modeling the HBT versus the BJT
 3.1.2 Parameter Extraction
 3.1.3 Motivation for an Empirical Bipolar Device Model
 3.1.4 Physics-Based and Empirical Models
 3.1.5 Compatibility between Large- and Small-Signal Models

3.2 Model Construction and Parameter Extraction
 3.2.1 Current Source Model
 3.2.2 Current Source Model Parameter Extraction
 3.2.3 Extraction of Intrinsic Capacitances
 3.2.4 Extraction of Base Resistance
 3.2.5 Parameter Extraction Procedure

3.3 Temperature-Dependent InGaP/GaAs HBT Large-Signal Model
3.4 Empirical Si BJT Large-Signal Model
3.5 Extension of the Empirical Modeling Method to the SiGe HBT
3.6 Summary

References

4 **SCALABLE MODELING OF RF MOSFETS**

4.1 Introduction
 4.1.1 NQS Effects
 4.1.2 Distributed Gate Resistance
 4.1.3 Distributed Substrate Resistance

4.2 Scalable Modified BSIM3v3 Model
 4.2.1 Scalability of MOSFET Model
 4.2.2 Extraction of Small-Signal Model Parameters
 4.2.3 Scalable Substrate Network Modeling
 4.2.4 Modified BSIM3v3 Model

4.3 Summary

References

5 **POWER AMPLIFIER IC DESIGN**

5.1 Introduction
5.2 Power Amplifier Design Methodology
5.3 Classes of Operation
5.4 Performance Metrics
CONTENTS

5.5 Thermal Instability and Ballasting 136
References 138

6 POWER AMPLIFIER DESIGN IN SILICON 141

6.1 Introduction 141
6.2 A 2.4-GHz High-Efficiency SiGe HBT Power Amplifier 142
6.2.1 Circuit Design Considerations 143
6.2.2 Analysis of Ballasting for SiGe HBT Power Amplifiers 146
6.2.3 Harmonic Suppression Filter and Output Match Network 148
6.2.4 Performance of the Power Amplifier Module 150
6.3 RF Power Amplifier Design Using Device Periphery Adjustment 153
6.3.1 Analysis of the Device Periphery Adjustment Technique 155
6.3.2 1.9-GHz CMOS Power Amplifier 157
6.3.3 1.9-GHz CDMA/PCS SiGe HBT Power Amplifier 162
6.3.4 Nonlinear Term Cancellation for Linearity Improvement 166
References 169

7 EFFICIENCY ENHANCEMENT OF RF POWER AMPLIFIERS 173

7.1 Introduction 173
7.2 Efficiency Enhancement Techniques 174
7.2.1 Envelope Elimination and Restoration 174
7.2.2 Bias Adaptation 175
7.2.3 The Doherty Amplifier Technique 175
7.2.4 Chireix's Outphasing Amplifier Technique 176
7.3 The Classical Doherty Amplifier 179
7.4 The Multistage Doherty Amplifier 181
7.4.1 Principle of Operation 181
7.4.2 Analysis of Efficiency 186
7.4.3 Practical Considerations 188
7.4.4 Measurement Results 190
References 198

INDEX 199